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From the President

Dear readers of Mathematics Competitions journal!

It is my great pleasure to announce the recipients of the 2022 Paul Erdős Award. The Awards Com-
mittee chaired by Alexander Soifer collected and assessed the nominations. The recommended
candidates were approved by the Executive Committee of WFNMC. They are (in alphabetic
order):

• Géza Kós (Hungary)

• Nairi Sedrakyan (Armenia)

• Sergey Rukshin (Russia)

Congratulations to our distinguished colleagues for their outstanding achievements and meritorious
national and international contributions!

We remind all that the Paul Erdős Award has been established to recognize contributions of persons
who have played a significant role in the development of mathematical challenges with essential
impact on mathematics learning.

The following brief description of the main contributions of our awardees (taken from the report
of the Awards Committee) shows that they all completely satisfy the requirements.

Dr. Géza Kós is an Associate Professor of Eötvös University in Budapest. During his early life he
participated in the International Mathematical Olympiad (IMO) from 1984–86, winning a silver
medal and two gold medals. Dr. Kós has continued to be involved in the IMO. Starting in 2006,
with rare exceptions, Dr. Kós has been a coordinator and an important member of the Problem
Selection Committee (PSC) of IMO. Starting in 1986, Kós has been involved in the points contest
of KöMaL magazine, creating the computer database for the contests and maintaining the website.
In 1993, with two colleagues he created a contest in advanced mathematics problems. Kós has
created hundreds of contest problems and published 28 articles related to the contest. Starting in
1991, he has also been a member of the contest committee of the József Kürschák Competition. Dr.
Kós has been involved in other local competitions as well. In the Miklós Schweitzer competition
he was a member of the committee in 1992, 2018 and 2020. In the Romanian Masters in Ma-
thematics he was a coordinator in 2012. Starting in 2016, Kós has been and remains a member
of the Jury of the International Olympiad of Metropolises in Moscow (IOM). At the University
competitions level, Géza has been helping at the International Mathematics Competitions (IMC)
since 1998, and is a key organizer involved in problem selection, preparation of solutions and
results, and in some years has been a moderator of the Jury. In 2009, he was the local organizer
in Budapest. In 2020 and 2021, when the IMC contest was held online, Kós arranged all the
technical details, programmed the website, headed the PSC and led the Jury. He was also invited
to be coordinator of the Putnam University examinations in 2020/21 and 2021/2022. During the
same years when Olympiads were virtual Géza was a coordinator and a member of the PSC of
the European Girls’ Mathematical Olympiad (EGMO) for high school students. The same is true
for the one-time 2020 Cyberspace Mathematics Competition (CMC), also organized virtually. Dr.
Kós was the team leader of his own Eötvös University teams at the Vojtech Jarnik competition for
university students in Ostrava most years since 1999. He was elected to the Chair of the Jury 13
times. Starting in 2009, Géza Kós has been a permanent member of the problem committee of the
Competencia Iberoamericana Interuniversitaria de Matemáticas (CIIM).
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Dr. Nairi Sedrakyan is a Laureate of the highest award of the Ministry of Education and Sciences
of the Republic of Armenia: Gold Medal for the Achievement in Teaching. Dr. Sedrakyan has
authored 14 books and around 70 articles in different countries (USA, Switzerland, South Korea,
Russia) on the topic of problem solving and Olympiad style mathematics, including ”Number
Theory through Exercises”, 2019, USA; ”The Stair- Step Approach in Mathematics”, 2018, Springer,
USA (550 pages); ”Algebraic Inequalities”, 2018, Springer, USA (256 pages); and ”Geometric
Inequalities. Methods of Proving”, 2017, Springer, USA, (464 pages). Starting in 2016, Dr.
Sedrakyan has been and remains a member of the Problem Selection Committee (PSC) and a
member of the Jury of the International Olympiad of Metropolises, Moscow, Russia. Starting
in 2006, Sedrakyan is a member of the problem selection committee and a jury member of In-
ternational Zhautykov Olympiad, Almaty, Kazakhstan. He was a member of the International
Jury and a member of the Problem Selection Committee (PSC) of the 51st International Mathe-
matical Olympiad (IMO), Kazakhstan, 2010. For many years Dr. Sedrakyan was a leader or a
deputy leader of the Armenian national team in IMO. He is the author of 11 problems included
in the Shortlists of IMO’s. He is a professional coach for IMO (trained 1 Gold Medal winner, 4
Silver Medal winners, and 15 Bronze Medal winners). Dr. Sedrakyan was the President of the
Republican Mathematical Olympiads of the Republic of Armenia, 2011-2013, and a Jury member
during 1996–2005 and 2009-2013. He was the President and Organizer of International Ma-
thematical Olympiad ”Tournament of Towns” in the Republic of Armenia, 1986–2013. He was
the President of the Yerevan’s state Mathematical Olympiad, Republic of Armenia, 1996–2013.
Mr. Sedrakyan received Gold Medal for contributions to World’s Mathematical Olympiads and
Scientific Activities from the University of Riga and the Latvian Mathematical Committee.

In 2017, Professor Sergey Rukshin became a Laureate of the highest teacher’s award of Russia:
People’s Teacher of the Russian Federation. He is a Professor of the Department of Mathematical
Analysis of the Russian State Pedagogical University named after A. I. Herzen. Mr. Rukshin is the
Scientific Director of the Physics and Mathematics Lyceum No. 239 of Saint Petersburg, one of
the only few great mathematics magnet schools of Russia that regularly wins in Russian National
Mathematical Olympiad and sends its students to the International Mathematics Olympiad (IMO)
on the Team of Russia. At 16, in 1975 he joined the Leningrad Mathematics Center, which he leads
still today. In 1981, Mr. Rukshin created the Summer Camp of the Mathematics Center, and in
1992 the Open Olympiad. He is a Member of the Public Council of the Ministry of Education and
Science on the reform of the Russian Academy of Sciences. Mr. Rukshin raised generations of first
class mathematicians, dozens of IMO medalists, including such world’s top celebrities and Fields
Medal Laureates as Grigory Perelman and Stanislav Smirnov. Smirnov was awarded the Order of
Honor of Russia. Kazakhstan had not been among the strongest teams in the IMO’s. However,
when they hired Rukshin to train and lead their team for the 2001 IMO in Washington, DC, the
Kazakhstan Team came in 4th in a field of ca. 90 national teams. It is very important to notice
that Mr. Rukshin’s goal has always been to raise students, capable of deep thoughts and solving
difficult problems. He considers Olympiad victories as a byproduct of learning mathematics. In
all, Sergey Rukshin is a celebrated person in the country of 140 million people, called Russia,
with a good number of published papers, book, interviews and appearances on Russian national
television.
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These short biographies can also be found on the WFNMC web site: http://www.wfnmc.or
g/awards.html

The awards will be presented at the 9-th Congress of WFNMC that will take place from the 19th
to the 25th of July of 2022 in Sofia, Bulgaria.

My best regards,

Kiril Bankov
President of WFNMC
March 2022
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Editor’s Page

Dear Competitions enthusiasts, readers of our Mathematics Competitions journal!

Mathematics Competitions is the right place for you to publish and read the different activities
about competitions in Mathematics from around the world. For those of us who have spent a great
part of our life encouraging students to enjoy mathematics and the different challenges surrounding
its study and development, the journal can offer a platform to exhibit our results as well as a place
to find new inspiration in the ways others have motivated young students to explore and learn
mathematics through competitions. In a way, this learning from others is one of the better benefits
of the competitions environment.

Following the example of previous editors, I invite you to submit to our journal Mathematics
Competitions your creative essays on a variety of topics related to creating original problems,
working with students and teachers, organizing and running mathematics competitions, historical
and philosophical views on mathematics and closely related fields, and even your original literary
works related to mathematics.

Just be original, creative, and inspirational. Share your ideas, problems, conjectures, and solutions
with all your colleagues by publishing them here. We have formalized the submission format to
establish uniformity in our journal.

Submission Format
FORMAT: should be LaTeX, TeX, or for only text articles in Microsoft Word, accompanied by
another copy in pdf. However, the authors are strongly recommended to send article in TeX or
LaTeX format. This is because the whole journal will be compiled in LaTex. Thus your Word
document will be typeset again. Texts in Word, if sent, should mainly contain non-mathematical
text and any images used should be sent separately.
ILLUSTRATIONS: must be inserted at about the correct place of the text of your submission in
one of the following formats: jpeg, pdf, tiff, eps, or mp. Your illustration will not be redrawn.
Resolution of your illustrations must be at least 300 dpi, or, preferably, done as vector illustrations.
If a text is embedded in illustrations, use a font from the Times New Roman family in 11 pt.
START: with the title centered in Large format (roughly 14 pt), followed on the next line by the
author(s)’ name(s) in italic 12 pt.
MAIN TEXT: Use a font from the Times New Roman family or 12 pt in LaTex.
END: with your name-address-email and your website (if applicable).
INCLUDE: your high resolution small photo and a concise professional summary of your works
and titles.
Please submit your manuscripts to Marı́a Elizabeth Losada at
director.olimpiadas@uan.edu.co

We are counting on receiving your contributions, informative, inspired and creative. Best wishes,

Maria Elizabeth Losada
EDITOR
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The Art of Proposing Problems in Mathematics
Competitions II

Bin Xiong and Gangsong Leng

Bin Xiong is a professor of mathematics education in the school
of mathematics sciences at East China Normal University. His
research interest is in problem solving and gifted education,
with an emphasis on methodology of mathematics, theory of
mathematics problem solving, mathematics education, and the
identification and nurturing of talented students. He has published
more than 100 papers and published or edited more than 150
books, both within China and abroad. He served as the leader
of the Chinese National Team for the International Mathematical
Olympiad for 10 times. He is also involved in the National Junior
High School Competition, the National High School Mathematics
Competition, the Western China Mathematical Olympiad and the
Girls Mathematical Olympiad. In 2018, Prof. Xiong was awarded
the Paul Erdős Award by the World Federation of National Mathe-

matics Competitions.

Gangsong Leng is a professor in Department of Mathematics,
Founder and Leader of the Convex Geometry group at Shanghai
University. His major research interests are convex geometry and
integral geometry. In his more than thirty years career, more than
100 academic papers have been published in J. Differential Geom.,
Adv. Math., Trans. Amer. Math. Soc., Math. Z. and other
academic journals. In addition, he has published more than 50
papers on mathematics competition and mathematics education as
well. He has been the coach of the National Training Team, and as
well a member of the Main Examination Committee of China Ma-
thematics Olympics (CMO). Since 2013, he has been the Chair of
Main Examination Committee of the China Western Mathematical

Olympiad. He served as the Leader of the China National Team for the International Mathematical
Olympiad (IMO) in 2007, and also served as the Deputy Leader in 2006 and 2009. His research
won ICCM Best Paper Award (2017), and his achievements on Mathematical Education won him
the Paul Erdős Award of the World Federation of National Mathematics Competitions in 2020.

Introduction

This is the second part of “The Art of Proposing Problems in Mathematics Competitions”. In the
first part, we give some examples including: a problem originated from Tao’s result, the expansion
property of pedal triangles, the cardinal number of maximal independent set, finding isosceles
trapezoids and Problems on convex sequences.

In this part, we give some more examples.
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The intersections of three nonempty sets

The following problem is from Romania TST in 2004 (see [1]).

Problem 0.1.1. Suppose n > 1 is a positive integer, and X is an n-term set. A1, A2, · · · , A101

are the subsets of X such that the cardinal number of the union of any 50 sets among them is

more than 50
51n. Prove that there exist 3 sets in these 101 subsets such that any two of them have

nonempty intersection.

Proof. We consider the graph G with vertices A1, A2, · · · , A101. If the intersection of any two

sets is nonempty, then we draw an edge between them. This problem requires us to prove the

existence of a triangle in this graph G.

If there does not exist a triangle in the graph G, then there are at least 51 vertices in this graph

with degree at most 50. In fact, if the number of vertices with degree at most 50 is at most 50,

there exist 51 vertices and the degree for each vertex is at least 51. Therefore, there must be two

vertices with edge connecting them, say A and B. Note that, there exist edges connecting A and

50 vertices among the remaining 99 vertices, and so is B. Therefore, there exists a vertex C with

connections to A and B. Thus, we get a triangle ABC. A contradiction!

Now we assume that A1, A2, · · · , A51 are points whose degrees are at most 50. Then each Ai(i ≤

51) has intersections with at most 50 subsets and has no intersections with the remaining 50

subsets. This means that there exist 50 subsets such that Ai is contained in the complement of the

union of these 50 sets. Since the cardinal number of the union of any 50 subsets is more than 50
51n,

then the cardinal number of Ai is less than 1
51n. Hence,

|A1 ∪ A2 ∪ · · · ∪ A50| < |A1| + |A2| + · · · + |A50| <
50
51n,

a contradiction. This means that there must exist 3 sets whose intersection is nonempty in these

101 sets.

The above approach is very interesting, and it only uses the fact that each Ai is contained in the
complement of the union of some 50 subsets. However, if we reconsider this question by counting
method, we can find a stronger conclusion.

Problem 0.1.2. Let n > 1 be a positive integer and let X be a set with n elements. Suppose

A1, A2, · · · , A101 are subsets of X and any union of 50 subsets is more than 50
51n. Prove that there

exist 3 subsets whose intersection is nonempty in these 101 subsets.

11
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Proof. We prove it by contradiction. If any 3 subsets of A1, A2, · · · , A101 is nonempty, then

∑
1≤i<j<k≤101

|Ai ∩ Aj ∩ Ak| = 0.

By the inclusion-exclusion principle,

n ≥
∣∣∣∣∣
101⋃
i=1

Ai

∣∣∣∣∣ =
101∑
i=1

|Ai| −
∑

1≤i<j≤101
|Ai ∩ Aj | . (0.1.1)

Without loss of generality, assume that |A101| is the maximal. Observing

50∑
i=1

|Ai| ≥
∣∣∣∣ 50⋃
i=1

Ai

∣∣∣∣ > 50
51n,

100∑
i=51

|Ai| ≥
∣∣∣∣ 100⋃
i=51

Ai

∣∣∣∣ > 50
51n,

one can obtain
101∑
i=1

|Ai| ≥ 101
100

100∑
i=1

|Ai| >
101
100 × 100

51 n = 101
51 n. (0.1.2)

It follows from (0.1.1) and (0.1.2) that

∑
1≤i<j≤101

|Ai ∩ Aj | ≥
101∑
i=1

|Ai| − n >

(101
51 − 1

)
n = 50

51n. (0.1.3)

On the other hand, for any {k1, k2, · · · , k50} ⊂ {1, 2, · · · , 101}, by inclusion-exclusion principle,

50
51n <

∣∣∣∣∣
50⋃

i=1
Aki

∣∣∣∣∣ =
50∑

i=1
|Aki

| −
∑

1≤i<j≤50

∣∣∣Aki
∩ Akj

∣∣∣ ,
For any subset in {1, 2, · · · , 101} with 50 elements, there exist a similar inequality and the total

number of this kind of inequalities is
(101

50
)
. Summing over all these inequalities, we obtain

50
51n ·

(
101
50

)
<

(
100
49

)
·

101∑
i=1

|Ai| −
(

99
48

) ∑
1≤i<j≤100

|Ai ∩ Aj | . (0.1.4)

Since any element in X belongs to at most two sets in A1, A2, · · · , A101, one has

101∑
i=1

|Ai| ≤ 2n. (0.1.5)

By (0.1.4) and (0.1.5), one has

∑
1≤i<j≤100

|Ai ∩ Aj | <
(100

49 )
(99

48)
· 2n − (101

50 )
(99

48)
· 50

51n

=
(

200
49 − 100×101

49×51

)
n

= 100
49 · 1

51n. (0.1.6)
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It follows from (0.1.3) and (0.1.6) that

100
49 · 1

51n >
50
51n,

i.e., 100 > 49 × 50, which is a contradiction.

The above method is based on the inclusion-exclusion principle. For any subset in {1, 2, · · · , 101},
using the inclusion and exclusion principle and then adding the inequalities together is actually
taking the “mean value”. It is a common method.

The previous problem is a new conclusion based on a new method but still closely related to
the original question. In order to design a new problem based on it, it is necessary to make
more changes. We first concentrate on the assumption because 50

51n may not be optimal. After
several attempts, we found that for general n it seems impossible to determine the sharp bound.
In retrospect, could we find the maximum for some special smaller n? This can assess students’
ability on combinational construction. After pondering, we proposed the following problem.

Problem 0.1.3. Let |X| = 16. For any 8 subsets of X , if the cardinal number of the union of

any 4 subsets is not less than n, then there must exist 3 subsets among them, whose intersection is

nonempty. Find the smallest possible n.

Answer: nmin = 13.

Proof. Firstly, we prove that the conclusion for n = 13 is true. To prove it, we assume the

contrary. Suppose that there exist 8 subsets of X satisfying that the number of elements of the

union of any 4 subsets of these sets is not less than 13 while any intersection of 3 subsets is empty.

Then any 4-subset group of the 8 subsets corresponds least 13 elements in X . The number of such

elements is at least 13
(8

4
)
. On the other hand, each element belongs to at most 2 subsets which

means that each element is counted at most
(8

4
)

−
(6

4
)

times. Therefore, 13
(8

4
)

≤ 16(
(8

4
)

−
(6

4
)
),

i.e., 16
(6

4
)

≤ 3
(8

4
)
, which is a contradiction.

Secondly, we will prove n ≥ 13. If not, assume n ≤ 12 and X = {1, 2, · · · , 16}. Let

Ai = {4i − 3, 4i − 2, 4i − 1, 4i} (i = 1, 2, 3, 4),

Bi = {j, j + 4, j + 8, j + 12} (j = 1, 2, 3, 4).

Obviously, the intersection for any 3 subsets is empty. Moreover,

|Ai ∩ Aj | = 0 (1 ≤ i < j ≤ 4),

|Bi ∩ Bj | = 0 (1 ≤ i < j ≤ 4),

|Ai ∩ Bj | = 1 (1 ≤ i, j ≤ 4),

13
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Therefore, for any subsets P, Q, R, S, if there exist 3 subsets equal to Ai(or equal to Bj at the

same time), then the number of elements of the union of these subsets is 12 ≥ n. If 2 sets are Ai

and the other 2 sets are Bi, by inclusion and exclusion principle, we have

|P ∪ Q ∪ R ∪ S| = |P | + |Q| + |R| + |S| − 2 × 2 = 16 − 4 = 12 ≥ n,

But the intersection of any 3 subsets is empty, which is a contraction.

In conclusion, the smallest possible n is 13.

The solution of Problem 0.1.3 needs a construction process, while Problems 0.1.1 and 0.1.2 do
not. It is extremely important to assess students’ ability of construction.

The following problem is more difficult than Problem 0.1.3.

Problem 0.1.4. Let |X| = 30. For any 11 subsets of X , if the cardinal number of the union of any

5 subsets is not less than n, there exist 3 subsets whose intersection is nonempty. Find the smallest

possible n.

The answer is 22. We do not provide a solution here.

Problems 0.1.3 and 0.1.4 are both nice. However, their proofs are still based on taking mean value
directly. We hope to transform the proof into two steps: using optimization first and then taking
mean value. (Actually, the way that “delete the lowest score and the highest score, then take the
mean value” is used a lot, which seems to be a better way of taking the mean value.) As a result,
we proposed the sixth problem of the 21th CMO in 2006 (see [4]).

Problem 0.1.5. Let |X| = 56. For any 15 subsets of X , if the number of elements of the union of

any 7 subsets is not less than n, there exist 3 subsets among the 15 subsets, whose intersection is

nonempty. Find the smallest possible n.

The answer is 41. If we deal with the mean value for 15 subsets, we can only show that the
minimum is no more than 42. Therefore, we must use the optimization process: firstly we find
the largest subset (the number of elements is at least 8) and delete it; then we take the mean value,
which gives the desired result.

Proof. The smallest possible n is 41.

We first show that n can be 41. By contradiction, we assume: There exist 15 subsets of X such

that the union of any 7 subsets has no less than 41 elements, but the intersection of any 3 subsets

is empty. Since each element belongs to at most 2 subsets, so we can assume without loss of

generality that each element belongs exactly to 2 subsets (otherwise we can add some elements

in subsets such that the condition above still holds). By the pigeonhole principle, there must

be a subset, say A, has at least
⌈2×56

15
⌉

+ 1 = 8 elements. Denote the other 14 subsets by

14
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A1, A2, . . . , A14. Consider any 7 subsets except A. They will correspond to 41 elements in X . All

of them correspond to at least 41C7
41 elements. On the other hand, for an element a, if a /∈ A, then

there are 2 subsets among A1, A2, . . . , A14 containing a. So a is counted not more than
(14

7
)
−
(12

7
)

times. If a ∈ A, then there is one subset among A1, A2, . . . , A14 containing a. So a is counted(14
7
)

−
(13

7
)

times. Hence,

41C7
41 ≤ (56 − |A|)(C7

14 − C7
12) + |A|(C7

14 − C7
13)

= 56(C7
14 − C7

12) − |A|(C7
13 − C7

12)

≤ 56(C7
14 − C7

12) − 8(C7
13 − C7

12),

which implies 196 ≤ 195, a contradiction.

Next we prove that n ≥ 41.

We present a counterexample to show that n can not be ≤ 40. Let X = {1, 2, . . . , 56}, and let

Ai = {i, i + 7, i + 14, i + 21, i + 28, i + 35, i + 42, i + 49}, i = 1, 2, . . . , 7,

Bj = {j, j + 8, j + 16, j + 24, j + 32, j + 40, j + 48}, j = 1, 2, . . . , 8.

Clearly,

|Ai| = 8 (i = 1, 2, . . . , 7),

|Ai ∩ Aj | = 0 (1 ≤ i < j ≤ 7),

|Bj | = 7 (j = 1, 2, . . . , 8),

|Bi ∩ Bj | = 0 (1 ≤ i < j ≤ 8),

|Ai ∩ Bj | = 1 (1 ≤ i ≤ 7, 1 ≤ j ≤ 8).

For any 3 subsets, there must be 2 subsets belonging to {A1, ..., A7} or belonging to {B1, ..., B8},

and thus their intersection is empty.

For any 7 subsets

Ai1 , Ai2 , . . . , Ais , Bj1 , Bj2 , . . . , Bjt , (s + t = 7),

we have

|Ai1 ∪ Ai2 ∪ . . . ∪ Ais ∪ Bj1 ∪ Bj2 ∪ . . . ∪ Bjt |

= |Ai1 | + |Ai2 | + . . . + |Ais | + |Bj1 | + |Bj2 | + . . . + |Bjt | − st

= 8s + 7t − st = 8s + 7(7 − s) − s(7 − s)
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= (s − 3)2 + 40 ≥ 40.

while the intersection of any 3 subsets is empty. Thus, the minimum n is not less than 41.

In conclusion, the smallest possible n is exactly 41.

Among the total 150 participants, only 10 of them completely solved this problem. It is a difficult
problem, which was voted to be the best problem in the selection activities (voted by participants)
sponsored by the Jiuzhang book store in Taiwan in that year.

A counting problem for sequences

Problem 0.1.6. (1998, Bulgaria; 2010, Hongkong) Let n be a given positive integer. How many

sequences of a1, a2, . . . , a2n with ai = 1 or −1 such that for any 1 ≤ k ≤ m ≤ n, k, m ∈ N∗,∣∣∣∣ 2m∑
i=2k−1

ai

∣∣∣∣ ≤ 2 ?

Question: Could we propose a similar counting problem for sequences of ±1 with length 2n + 1?

Finally, we modify the assumptions of Problem 0.1.6, and consider a more difficult “dual counting
problem”:

Problem 0.1.7. Find the number of the different sequences with terms ±1 and sequence length

2n + 1 such that the absolute value of the sum of any odd successive terms is no greater than 1.

Sketch of Proof. Denote Sj by the sum of preceding j terms. Let S0 = 0. We only consider

the case S1 = 1, and the case S1 = −1 is similar. It suffices to find the number of sequences

(S0, S1, . . . , S2n+1) with S0 = 0, S1 = 1, Sj+1 = Sj ± 1, j ≥ 1 such that, for any 0 ≤ k, m ≤ n,

|S2k − S2m+1| ≤ 1. (0.1.7)

Taking m = 0 in (0.1.7) yields S2k = 0 or 2, and taking k = 0 in (0.1.7) yields S2m+1 = −1 or 1.

There are two cases:

(1) The number of sequences with S2t+1 = 1 for each 1 ≤ t ≤ n is 2n.

(2) The number of sequences with S2t+1 = −1 for some t(1 ≤ t ≤ n) is 2n − 1.

Then the number of sequences with S1 = 1 satisfying given assumptions is 2n+2n−1 = 2n+1−1.

Thus, the number of sequences satisfying given conditions is 2(2n+1 − 1) = 2n+2 − 2.
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Inequalities for complex numbers from unit modulus

In this section, we will show an example of transforming a math Olympic problem to a research
problem. It gives us some enlightenments that how to think, pose and find new problems by
mathematical thinking.

Problem 0.1.8. (IMO, 2003) Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real

numbers. Then ( n∑
i=1

n∑
j=1

|xi − xj |
)2

≤ 2(n2 − 1)
3

n∑
i=1

n∑
j=1

(xi − xj)2.

Later, the reverse version of this inequality appeared in NSMath http://www.nsmath.cn/.

Problem 0.1.9. Let x1, x2, · · · , xn be real numbers. Then

( ∑
1≤i<j≤n

|xi − xj |
)2

≥ (n − 1)
∑

1≤i<j≤n

(xi − xj)2.

Note that the above problem is translation invariant (i.e., invariant under the transformation xi →
xi + t). Based on translation invariance, it is equivalent to the following:

Problem 0.1.10. Let x1 ≤ x2 ≤ · · · ≤ xn be real numbers with
∑n

k=1 xk = 0. Then

( n∑
k=1

kxk

)2
≥ n(n − 1)

4

n∑
k=3

x2
k.

Does it hold for complex numbers? We conjectured that the complex version of Problem 0.1.9 is
still true.

Problem 0.1.11. Assume that z1, z2, · · · , zn ∈ C. Then

(
∑

1≤k<j≤n

|zk − zj |)2 ≥ (n − 1)
∑

1≤k<j≤n

(zk − zj)2.

Shiquan Li, a student in Yali Middle School, proved our conjecture (see [2]).

If we restrict the complex number in Problem 0.1.11 on the unit circle, then we obtain a weaker
inequality. However, we can improve it to the following version.

Problem 0.1.12. Let z1, z2, · · · , zn be n complex numbers on the unit circle with
∑n

k=1 zk = 0.

Then ∑
1≤k<j≤n

|zk − zj | ≥ n2

2 .
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Proof.

∑
1≤k<j≤n

|zk − zj | = 1
2

n∑
k=1

n∑
j=1

|zk − zj | ≥ 1
2

n∑
k=1

∣∣ n∑
j=1

(zk − zj)
∣∣

= 1
2

n∑
k=1

n|zk| = n2

2 .

Is the bound in Problem 0.1.12 optimal?

Problem 0.1.13. Let z1, z2, · · · , zn be n complex numbers on the unit circle with
∑n

k=1 zk = 0.

Denote

S :=
∑

1≤k<j≤n

|zk − zj |.

(1) If n is even, the minimum of S is n2

2 .

(2)∗ If n is odd, find the minimum of S.

Note that (2)∗ is not completely solved. Yunhao Fu tested the distribution of the minimum point
and found a weaker lower bound. Xiaosheng Mu solved the case for n = 5 completely.

The following is the reverse version of Problem 0.1.13.

Problem 0.1.14. Let z1, z2, · · · , zn be n complex numbers on the unit circle. Find the maximum

of ∑
1≤k<j≤n

|zk − zj |.

The maximum is n cot π
2n . When n points form a regular polygon, the sum attains its maximum.

Problem 0.1.14 is the 2-dimensional version of the following well-known Thompson problem.

Thompson’s problem Let x1, x2, · · · , xn be n points in the unit sphere in Rm. Find the maximum

of ∑
1≤k<j≤n

|xk − xj |.

When m = 3, the problem is the seventh problem in “Mathematical Problems in 21st Century”
proposed by Smale, Fields awards owner, in 1998.

Based on our problems, we proposed the following reverse Thompson’s problem. Actually Problems
0.1.12 and 0.1.13 are the special cases of this problem in dimension 2.

Problem 0.1.15. Let x1, x2, · · · , xn be n points on the unit ball in Rm with
∑n

k=1 xk = 0 (the

centroid is the origin). Find the minimum of

∑
1≤k<j≤n

|xk − xj |.
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It seems to be a difficult and new question!

Now it is clear for us that the background of Problem 0.1.8 (problem of IMO) is actually a 1-
dimensional (real number) Thompson’s problem.

Problems of short vectors

Problem 0.1.16. (ShahAli, AMM 2010) If a vector v in Rn satisfies ∥v∥ ≤ 1, then we call it a

short vector. Let v1, v2, . . . , v6 be 6 short vectors in the plane such that their sum is zero. Prove

that there exists three of them satisfying their sum is still a short vector.

In 2014, Xiaosheng Mu proposed the following generalization of Problem 0.1.16.

Problem 0.1.17. Suppose that the sum of 2n vectors in the plane is zero. Prove that there are n

vectors among them such that their sum is a short vector.

It seems that the above two problems are not appropriate for Mathematical contest. Thus, we
consider their special cases.

(1) The case of 1-dimensional real numbers

Problem 0.1.18. Let x1, x2, . . . , x6 be six real numbers in [−1, 1] such that their sum is zero. How

many triples (i, j, k), 1 ≤ i < j < k ≤ 6, at least are there, such that xi + xj + xk ∈ [−1, 1]?

The answer is 12. It is a problem of medium difficulty.

(2) Problems of short vectors of cubes

Notice that when v is a short vector, it means that v belongs to an unit disk. If we replace the unit
disk by unit cube (the unit ball of the normed space l2∞), then we have

Problem 0.1.19. (2017, Summer Olympic Test of NSMath) Let

A =
{
z = x + yi

∣∣ |x| ≤ 1, |y| ≤ 1, x, y ∈ R
}

,

and let z1, z2, · · · , z6 ∈ A with
6∑

i=1
zi = 0. Prove that there exist 1 ≤ i < j < k ≤ 6 such that

zi + zj + zk ∈ A.

The common solution is viewing Problem 0.1.18 as a lemma, and then utilizing the counting
method. Another elegant proof is to assume the contrary and to analyze the position of the sum of
triples.

Next, we introduce these two solutions respectively.
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Proof 1. The following lemma is needed.

Lemma Let x1, . . . , x6 ∈ [−1, 1] be real numbers such that their sum is 0, then there exist 12

triples (xi, xj , xk) of x1, . . . , x6 satisfying that the sum of each triple belongs to [−1, 1].

Proof of Lemma. We can assume that the number of nonnegative numbers among x1, . . . , x6 is no

less than the number of negative ones. Otherwise, we can replace x1, . . . , x6 by −x1, . . . , −x6. There

are following 4 cases:

Case 1. {x1, . . . , x6} has 6 nonnegative numbers. In this case, x1 = · · · = x6 = 0. Thus, the

sum of any triples of x1, . . . , x6 belongs to [−1, 1]. There are
(6

3
)

= 20 > 12 triples meeting the

requirements of the lemma.

Case 2. {x1, . . . , x6} has exactly 5 nonnegative numbers. We can assume that the six numbers

satisfy x1 < 0 ≤ x2 ≤ · · · ≤ x6. ∀ xi, xj , xk ∈ {x1, · · · , x6}, if x1 /∈ {xi, xj , xk}, then

0 ≤ xi + xj + xk ≤ x2 + · · · + x6 = −x1 ≤ 1;

If x1 ∈ {xi, xj , xk}, then

−1 ≤ xi + xj + xk ≤ x1 + · · · + x6 = 0.

Thus, there are
(6

3
)

= 20 > 12 triples meeting the requirements of the lemma.

Case 3. {x1, . . . , x6} has exactly 4 nonnegative numbers. We can assume that the six numbers

satisfy x1 ≤ x2 < 0 ≤ x3 ≤ · · · ≤ x6. ∀xi, xj ∈ {x3, . . . , x6}, we have

−1 ≤ x1 + xi + xj ≤ x1 + x2
2 + xi + xj = −

6∑
t=3

xt

2 + xi + xj ≤ xi + xj

2 ≤ 1.

Thus x1 + xi + xj ∈ [−1, 1] and

x2 + xi + xj = −(x1 +
∑

3≤t≤6,
t̸=i,j

xt) ∈ [−1, 1].

So there are
(4

2
)

× 2 = 12 triples meeting the requirements of the lemma.

Case 4. {x1, . . . , x6} has exactly 3 nonnegative numbers. We can assume that the six numbers

satisfy x1 ≤ x2 ≤ x3 < 0 ≤ x4 ≤ x5 ≤ x6.

Assume that |x3| ≤ |x4|. Otherwise, replace x1, · · · , x6 by −x1, · · · , −x6. Note that

−1 ≤ x2 + x5 + x6 = −x1 − x3 − x4 ≤ 1 − x3 + x3 = 1.
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i.e. x2 + x5 + x6 ∈ [−1, 1]. Thus, for any xi, xj from x4, x5, x6 and any xk from x1, x2, we have

−1 ≤ xi + xj + xk ≤ x5 + x6 + x2 ≤ 1,

i.e. xi + xj + xk ∈ [−1, 1]. For any xi in {x4, x5, x6} and xj in {x1, x2}, we have

xi + xj + x3 = −((x4 + x5 + x6 − xi) + (x1 + x2 − xj)) ∈ [−1, 1].

Therefore, there are
(3

2
)

×
(2

1
)

+
(3

1
)

×
(2

1
)

= 12 triples meeting the requirements of the lemma.

In conclusion, there are always 12 triples meeting the requirements of the lemma. When x1 =

x2 = −1, x3 = x4 = x5 = x6 = 1
2 , there are exactly 12 triples meeting the requirements of the

lemma. So 12 is optimal.

Back to the original problem. Let zk = ak + ibk (i = 1, · · · , 6). By the assumptions of the

problem, we have ak ∈ [−1, 1],
6∑

k=1
ak = 0.

Let A1 = {(j, k, l) | 1 ≤ j < k < l ≤ 6, aj + ak + al ∈ [−1, 1]}. By the lemma, |A1| ≥ 12.

Similarly, letting

B1 = {(j, k, l) | 1 ≤ j < k ≤ l ≤ 6, bj + bk + bl ∈ [−1, 1]} ,

we also have |B1| ≥ 12.

A1, B1 are the subsets of S = {(j, k, l) | 1 ≤ j < k < l ≤ 6}. Since |S| = C3
6 = 20 < |A1| +

|B1|, A1 and B1 have a nonempty intersection. That is, ∃ 1 ≤ j < k < l ≤ 6 such that

both aj + ak + al and bj + bk + bl belong to [−1, 1]. Therefore zj + zk + zl ∈ A.

Proof 2. Suppose the conclusion is not true. That is, ∀1 ≤ i < j < k ≤ 6, the point zi + zj +

zk does not belong to the cube A.

Let
H1 = {x + iy | y < −1, x, y ∈ R} ,

H2 = {x + iy | y > 1, x, y ∈ R} ,

H3 = {x + iy | x < −1, x, y ∈ R} ,

H4 = {x + iy | x > 1, x, y ∈ R} .

We first prove the following lemma.

Lemma: Let 1 ≤ i < j ≤ 6. For any k1, k2 satisfying 1 ≤ k1 < k2 ≤ 6, k1 ̸= i, j and k2 ̸=

i, j, the following cases will not appear.
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(i) zi + zj + zk1 belongs to one of H1, H2 and zi + zj + zk2 belongs to the other;

(ii) zi + zj + zk1 belongs to one of H3, H4 and zi + zj + zk2 belongs to the other.

Proof of Lemma. If this lemma is not true, we have |Re(zk1 − zk2)| > 2 or |Im(zk1 − zk2)| >

2, which contradicts the definition of A.

By the lemma, there are two of z1 + z2 + z3, z1 + z2 + z4, z1 + z2 + z5 belonging to the same

Hl. Without loss of generality, we assume that z1 + z2 + z3, z1 + z2 + z4 ∈ H1. Combining with
6∑

i=1
zi = 0, we conclude that z4 + z5 + z6 ∈ H2.

It follows from the facts z1 + z2 + z4 ∈ H1, z4 + z5 + z6 ∈ H2 and the lemma that z1 + z4 +

z5, z1 + z4 + z6, z2 + z4 + z5, z2 + z4 + z6 belong to neither H1 nor H2. Thus, these four numbers

belong to H3 or H4. By the lemma, they must all belong to one of H3 and H4. Without loss

of generality, we can assume that they all belong to H3. By the assumption
∑6

j=1 zj = 0, we

conclude that z2 + z3 + z6 ∈ H4. By the lemma again, z2 + z4 + z6 ∈ H4. A contradiction.

A stronger version of Problem 0.1.19 is

Problem 0.1.20. Let

A =
{
z = x + yi

∣∣ |x| ≤ 1, |y| ≤ 1, x, y ∈ R
}

,

and let z1, z2, · · · , z6 ∈ A with
6∑

i=1
zi = 0. How many triples (i, j, k), 1 ≤ i < j < k ≤ 6, at least

are there, such that xi + xj + xk ∈ A?

The answer is 6. It seems a difficult question.

Permutation Problems

First, we look at a simple example.

Problem 0.1.21. Do there exist 4 permutations a1, a2, · · · , a50; b1, b2, · · · , b50; c1, c2, · · · , c50;

d1, d2, · · · , d50 of 1, 2, · · · , 50, such that

50∑
i=1

aibi = 2
50∑

i=1
cidi ?

Sketch of Proof. The answer is negative. In fact, let S =
50∑

i=1
ixi. Then

Smax =
50∑

i=1
i2 = 42925, Smin =

50∑
i=1

i(51 − i) = 22100.
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Since Smax < 2Smin, it is impossible for equality.

This problem can be extended trivially to general n. However, as a strengthening version of
Problem 0.1.21, the following problem is not trivial.

Problem 0.1.22. Let x = {x1, x2, · · · , xn} be a permutation of 1, 2, · · · , n. Denote f(x) =

x1 + 2x2 + · · · + nxn. Can the value f(x) be any integer in the interval between
n∑

i=1
i(n + 1 − i)

and
n∑

i=1
i2?

In 2009, we studied this question. We first considered the case n = 3: Let {x1, x2, x3} be a
permutation of 1, 2, 3. Then the range of f(x) = x1 + 2x2 +3x3 is {10, 11, 13, 14}, without 12.
The number 12 is a “discontinuous point”!

It inspired us to think: For what kind of n, the range of f(x) has discontinuous points? For what
kind of n, the range of f(x) is a set of successive positive integers?

By case studyp, we found that when n ≥ 4 the range of f(x) does not have discontinuous points.

Therefore, we proposed the following problem, which appeared in the Chinese Southeast Mathe-
matical Olympiad in 2009 (see [5]).

Problem 0.1.23. Let n ≥ 4 be a positive integer and denote by A all the permutations of

1, 2, · · · , n. For any xn = (a1, a2, · · · , an) ∈ A, let f(xn) = a1 + 2a2 + · · · + nan. Determine

the cardinal number of the set {f(xn) | xn ∈ A}.

Proof. The solution is |Mn| = n3−n+6
6 .

We will prove

Mn =
{

n(n + 1)(n + 2)
6 ,

n(n + 1)(n + 2)
6 + 1, · · · ,

n(n + 1)(2n + 1)
6

}
,

by induction.

When n = 4, by the rearrangement inequality, the minimal element and maximal element of the

set M is

f({4, 3, 2, 1}) = 20 and f({1, 2, 3, 4}) = 30

respectively.

Together with

f({3, 4, 2, 1}) = 21, f({3, 4, 1, 2}) = 22,

f({4, 2, 1, 3}) = 23, f({3, 2, 4, 1}) = 24,

f({2, 4, 1, 3}) = 25, f({1, 4, 3, 2}) = 26,
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f({1, 4, 2, 3}) = 27, f({2, 1, 4, 3}) = 28,

f({1, 2, 4, 3}) = 29,

we have that M4 = {20, 21, · · · , 30} has 43−4+6
6 = 11 elements. Thus, the conclusion is true

when n = 4.

Assume that the conclusion holds for n−1(n ≥ 5). Next we prove it for n. Consider a permutation

Xn−1 = {x1, x2, · · · , xn−1} of 1, 2, · · · , n − 1.

First, let xn = n. We get a permutation x1, x2, · · · , xn−1, n of 1, 2, · · · , n. In this case,

n∑
k=1

kxk = n2 +
n−1∑
k=1

kxk.

By induction hypothesis,
∑n

k=1 kxk can attain any positive integer in the interval of[
n(n2 + 5)

6 ,
n(n + 1)(2n + 1)

6

]
.

Anther way is to take xn = 1. We have

n∑
k=1

kxk = n +
n−1∑
k=1

kxk

= n(n + 1)
2 +

n−1∑
k=1

k(xk − 1).

By induction hypothesis,
∑n

k=1 kxk can attain any positive integer in the interval of[
n(n + 1)(n + 2)

6 ,
2n(n2 + 2)

6

]
.

Noticing that
2n(n2 + 2)

6 ≥ n(n2 + 5)
6 ,

we have that
∑n

k=1 kxk can attain any positive integer in the interval of[
n(n + 1)(n + 2)

6 ,
n(n + 1)(2n + 1)

6

]
.

Therefore, the conclusion holds for n, and our proof is completed by induction.

Hence, the cardinal number of Mn is

n(n + 1)(2n + 1)
6 − n(n + 1)(n + 2)

6 + 1 = n3 − n + 6
6 .

It is a question of medium difficulty.
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A discrete Wirtinger type inequality

The celebrated Wirtinger inequality states that:

If f, f ′ ∈ L2[0, π], and f is a function with a period of 2π satisfying∫ 2π

0
f(x)dx = 0,

then ∫ 2π

0
f ′(x)2dx ≥

∫ 2π

0
f2(x)dx.

In 1950, Schoenberg [3] established the following discrete version of Wirtinger inequality.

If z1, z2, . . . , zn n ≥ 2 are complex numbers such that
n∑

k=1
zk = 0, then

n∑
k=1

|zk+1 − zk|2 ≥ 4 sin2 π

n

n∑
k=1

|zk|2,

where zn+1 = z1.

In 1992, Alzer [7] obtained a variant version of the discrete Wirtinger inequality.

If z1, z2, . . . , zn n ≥ 2 are complex numbers such that
n∑

k=1
zk = 0, then

n∑
k=1

|zk+1 − zk|2 ≥ 12n

n2 − 1 max
1≤k≤n

|zk|2,

where zn+1 = z1. The constant 12n
n2−1 is best possible.

Notice that the condition of zn+1 = z1 is called the period condition. By this condition, the sum
of n differences z2 − z1, z3 − z2, . . . , zn − zn−1, z1 − zn is zero. Without the period condition,
is there an analogous Alzer type inequality? After a deal of contemplation, we proposed the
following problem.

Problem 0.1.24. Let n ≥ 2 be a given positive integer. Find the maximum of λ(n) such that, for

any complex numbers z1, z2, . . . , zn satisfying
n∑

k=1
zk = 0, one has

n−1∑
k=1

|zk+1 − zk|2 ≥ λ(n) max
1≤k≤n

|zk|2.

This question for real numbers is actually the first problem of CMO in 2006 (see [4]), while the
solution is completely different from the Alzer inequality.

Another natural question is whether there exists a reserve Alzer inequality. So we have the
following two problems.
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Problem 0.1.25. (The reverse Alzer inequality under the non-period condition) If z1, z2, . . . , zn,

n ≥ 2, are complex numbers such that
n∑

k=1
zk = 0, then

n∑
k=1

|zk|2 ≥ 1
n

[n2

4
]

min
1≤k≤n−1

{|zk+1 − zk|2},

where the coefficient 1
n

[
n2

4
]

is best possible.

Problem 0.1.26. (The reverse Alzer inequality under the period condition) Let n be a given

positive integer. Find the maximum of λ(n) such that, for any n complex numbers z1, z2, . . . , zn,

one has
n∑

k=1
|zk|2 ≥ λ(n) min

1≤k≤n
{|zk+1 − zk|2},

where zn+1 = z1.

Solution. Let

λ0(n) =


n

4 when n is even,

n

4 cos2 π
2n

when n is odd,

we will prove that λ0(n) is the maximum of λ(n).

If there exists a positive number k (1 ≤ k ≤ n) such that |zk+1 − zk| = 0, then the conclusion

holds. Thus, we can assume that

min
1≤k≤n

{|zk+1 − zk|2} = 1. (0.1.8)

Under this condition, it suffices to prove that the minimal of
∑n

k=1 |zk|2 is λ0(n).

when n is even, since

n∑
k=1

|zk|2 = 1
2

n∑
k=1

(|zk|2 + |zk+1|2)

≥ 1
4

n∑
k=1

|zk+1 − zk|2

≥ n

4 min
1≤k≤n

{|zk+1 − zk|2} = n

4 ,

the equality holds if (z1, z2, · · · , zn) =
(

1
2 , −1

2 , · · · , 1
2 , −1

2

)
. Thus, the minimal of

∑n
k=1 |zk|2 is

n
4 = λ0(n).

We now consider the case that n is odd. Let

θk = arg zk+1
zk

∈ [0, 2π), k = 1, 2, · · · , n.
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For each k (k = 1, 2, · · · , n), if θk ≤ π
2 or θk ≥ 3π

2 , by (0.1.8), we have

|zk|2 + |zk+1|2 = |zk − zk+1|2 + 2|zk||zk+1| cos θk

≥ |zk − zk+1|2 ≥ 1. (0.1.9)

If θk ∈
(

π
2 , 3π

2

)
, it follows from cos θk < 0 and (0.1.8) that

1 ≤ |zk − zk+1|2

= |zk|2 + |zk+1|2 − 2|zk||zk+1| cos θk

≤ (|zk|2 + |zk+1|2)(1 − 2 cos θk)

= (|zk|2 + |zk+1|2) · 2 sin2 θk

2 .

Therefore,

|zk|2 + |zk+1|2 ≥ 1
2 sin2 θk

2
. (0.1.10)

Now, we consider the following two cases.

(i) If θk ∈
(

π
2 , 3π

2

)
, ∀1 ≤ k ≤ n, by (0.1.10),

n∑
k=1

|zk|2 = 1
2

n∑
k=1

(
|zk|2 + |zk+1|2

)
≥ 1

4

n∑
k=1

1
sin2 θk

2
. (0.1.11)

Since
n∏

k=1

zk+1
zk

= zn+1
z1

= 1,

n∑
k=1

θk = arg
(

n∏
k=1

zk+1
zk

)
+ 2mπ = 2mπ, (0.1.12)

where m ∈ N∗ and m < n. Since n is odd, it follows that

0 < sin mπ

n
≤ sin (n − 1)π

2n
= cos π

2n
. (0.1.13)

Let f(x) = 1
sin2 x

, x ∈
[

π
4 , 3π

4

]
, then f(x) is a convex function. By (0.1.11), the Jensen

inequality, (0.1.12) and (0.1.13),

n∑
k=1

|zk|2 ≥ 1
4

n∑
k=1

1
sin2 θk

2
≥ n

4 · 1
sin2

(
1
n

∑n
k=1

θk
2

)
= n

4 · 1
sin2 mπ

n

≥ n

4 · 1
cos2 π

2n

= λ0(n).

(ii) If there exists a j (1 ≤ j ≤ n) such that θj /∈
(

π
2 , 3π

2

)
, denote by

I =
{

j
∣∣∣ θj /∈

(
π

2 ,
3π

2

)
, j = 1, 2, · · · , n

}
.
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By (0.1.9), we have that |zj |2 + |zj+1|2 ≥ 1, ∀j ∈ I; By (0.1.10), for any j /∈ I ,

|zj |2 + |zj+1|2 ≥ 1
2 sin2 θj

2
≥ 1

2 .

Therefore,

n∑
k=1

|zk|2 = 1
2

∑
j∈I

(|zj |2 + |zj+1|2) +
∑
j /∈I

(|zj |2 + |zj+1|2)


≥ 1

2 |I| + 1
4(n − |I|)

= 1
4(n + |I|) ≥ n + 1

4 . (0.1.14)

Note that

n + 1
4 ≥ n

4
1

cos2 π
2n

⇔ cos2 π

2n
≥ n

n + 1

⇔ sin2 π

2n
= 1 − cos2 π

2n
≤ 1 − n

n + 1 = 1
n + 1 . (0.1.15)

when n = 3, (0.1.15) holds; When n ≥ 5,

sin2 π

2n
<

(
π

2n

)2
<

π2

2n
· 1

n + 1 <
1

n + 1 .

(0.1.15) also holds. Thus, for any odd number n ≥ 3,

n + 1
4 ≥ n

4 · 1
cos2 π

2n

.

Together with (0.1.14), we have

n∑
k=1

|zk|2 ≥ n

4 · 1
cos2 π

2n

= λ0(n).

Note that if we assume

zk = 1
2 cos π

2n

· e
i(n−1)kπ

n , k = 1, 2, · · · , n,

we have

|zk − zk+1| = 1, k = 1, 2, · · · , n.

Thus,
∑n

k=1 |zk|2 = λ0(n).

In conclusion, the maximum of λ(n) is λ0(n).
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The Problem 0.1.26 is actually the fifth problem of China TST in 2014 (see [6]). Among 60
students, only 6 students got it right.
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Abstract
In this article, we address the problem-selection process of the Mathema-
tical Kangaroo, which is an international, popular multiple-choice ma-
thematics competition. We describe the necessary steps starting with
problem suggestions and ultimately reaching a finalized national version
of the competition. The intention here is to illustrate the dynamics typical
to such a selection as well as pointing out the multivariate possibilities
of modification of submitted problems. We discuss and reflect these
modifications by analyzing various examples of competition problems of
recent years.
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Introduction

Mathematics competitions help identify students with higher abilities in mathematics, motivate
these students and therefore “have positive impact on education” (Kenderov, 2006, p.1583). Both
by solving problems during the competition and via discussions after the competitions, participants
(not just winners) increase their knowledge significantly (ibid., p.1589). Competitions differ from
other learning opportunities by an important property: “Problems for competitions are usually
composed externally to any particular school, and can test a student’s ability to use the mathema-
tics they have learned in the classroom in new contexts” (Taylor, 2017, p. 303). Therefore, it is
worth taking a closer look at the process of composition of competitions.

It is typically a multilevel process to finally present students a mathematics competition they work
on. It usually starts with suggestions of problems, which are then selected and modified by a small
group of experts. We show this process of problem selection vicariously using the Mathematical
Kangaroo, an international, popular mathematics competition. By popular or inclusive mathe-
matics competitions the “integral impact on the learning of mathematics becomes significant for
the overall development of the contemporary society” (Kenderov, 2009, p. 1589) and from this
point of view the contribution of the Mathematical Kangaroo “is difficult to overestimate” (ibid.).
Therefore, it is worth taking a closer look at this particular competition. Although the problem-
selection process certainly differs from contest to contest, there are some aspects of this specific
instance worth underlining, that might well be considered typical. We will do our best to point
out these aspects, as they manifest themselves in the annual work of this particular competition.
Both authors are part of the international selection process and furthermore responsible for one
particular country of this international competition as being members of the Austrian organization.

Furthermore, in this paper we would like to address a rarely discussed issue of mathematical com-
petitions. The selection process allows modifications on the problems at several points. Sometimes
this is necessary (e.g. for linguistic reasons), but sometimes this is also a matter of taste of the
people involved or due to the appropriateness of the problems for the students. We will deal with
each of these aspects of editing problem suggestions in the body of the paper.

Before we get to the description of the process, we give some general information about the Mathe-
matical Kangaroo and the annual AKSF (Association Kangourou sans Frontières) meetings. The
Mathematical Kangaroo is an international competition that has been organised annually since
1991. In recent years, more than 70 countries have been organising the competition and over six
million students from grade 1-12 (or 13) participated in 2019 (before the Covid-19 pandemic).

The competition problems are developed for six levels, according to the ages of the participants.
The category for grades 1 and 2 is called Pre-Écolier, for grades 3 and 4 Écolier, for grades 5
and 6 Benjamin, for grades 7 and 8 Cadet, for grades 9 and 10 Junior and for grade 11 and up
Student. The number of problems in each group varies from 15 to 30 (becoming greater for the
older groups), as does the time allowed to solve them (from 60 to 75 minutes). In each level, there
are equally many problems with a value of 3, 4 or 5 points for a correct answer, with one quarter of
the available points deducted for incorrect answers, and no deductions for problems not attempted.

The AKSF organization, although originally conceived as a European group, is currently composed
of 76 members from all over the globe, with about a dozen applications for membership status
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currently pending. The members of AKSF are national (or, under certain special circumstances,
regional) institutions, with the right and responsibility to organize the competition in their geographical
(or sometimes linguistic) area as part of a general program designed to popularize mathematics
at school level. More information about this is readily available at the public AKSF website (see
AKSF-website, 2021).

The article is organized as follows. Section 2 deals with the annual international problem selection
of the Mathematical Kangaroo and particular issues of cooperation. In particular, in sections 2.1
and 2.2 we describe the main selection of the problems, which is undertaken by representatives of
the national Kangaroo organizations at an annual meeting in the late fall from a general perspective.
Afterwards, we focus on the problem selection of one particular group, the Student working group,
and point out the dynamics of the working group in section 2.3 and sources of conflicts during
the problem selection in section 2.4. This section ends with some thoughts on modifications of
problems in section 2.5. Section 3 first describes the preparation of the national versions of the
Mathematical Kangaroo competition, by taking the Austrian working group as an example in
sections 3.1-3.3. After giving some insight on the modification of a particular task by the national
group in section 3.4 we focus on differences between comparable national versions of the Mathe-
matical Kangaroo in section 3.5 by exemplarily analysing a particular task

2. International Problem Selection – Round 1

2.1 From suggestions to international competition papers: A short overview of the

problem selection of the Mathematical Kangaroo

In October or November of each year, there is a meeting in one of the member states, where various
organizational aspects of the group’s work are dealt with. Most important of all, this is where the
problems for the annual competition are selected.

In the months leading up to the annual meeting, members are asked to submit problem suggestions
to the internal website of the organization. Each year, hundreds of problems are submitted here for
consideration, and the problems that appear on the next year’s papers are chosen from this pool.
At the time of submission, problems are given labels of several types. Each problem is suggested
for a specific level and a specific points-category. These may well change during the course of
the problem-selection process. It is not unusual for a problem suggested as a 5-point problem for
Benjamin to wind up being selected as a 4-point problem for Cadet, for instance. Also, problems
are categorized by topic - these are Algebra, Logic, Geometry and Number - and for the more
difficult or witty of the problems, there is an option to add a solution available to the posers, that
is sometimes made use of. (This option has, in fact, become more of a suggestion than an option
recently.)

The members then have the opportunity to rate (and solve) the suggested problems in the database
of the website. There are several levels to this rating, according to how appropriate the problem
seems, how nice or interesting it is felt to be, and also how difficult. These ratings are designed to
be used as a form of pre-selection, to reduce the number of problems to be discussed in detail at

32



Mathematics Competitions Vol 35 No 1 2022

the actual meeting.

At the annual meeting itself, six groups are convened, one for each of the six levels, with each
participant at the annual meeting taking part actively in one of these groups. Therefore, the
problem selection takes place for every level of the competition independently with some universal
rules and selective exchange between designated coordinators of the different levels. During
several hours of intense discussion, the merits of the individual problems are discussed, the wording
of the problems is refined somewhat, and 15 to 30 problems, depending on the requirements of the
particular level, are eventually selected for the paper, along with a handful of “reserve problems”
for every level. The motivation behind the reserve problems lies in the fact that some countries
may choose to eliminate some problems due to national curriculum considerations or for some
other local reasons, and it is therefore considered to be advantageous to offer some alternatives
that could easily have been chosen for the main paper, but just failed to make the cut at the last
moment. According to the by-laws of the Mathematical Kangaroo, each member has the right to
exchange up to five problems in each level if they are deemed to be inappropriate for their local
purposes for whatever reason. Also, problems are often modified subtly at the national level during
the translation process. More about this aspect will be explained in Section 3.

It should be mentioned that every effort is undertaken to make the selected problems wide-ranging,
thought-provoking and intellectually entertaining for participants from all backgrounds and all
skill levels. In Geretschläger & Donner (2021), the authors describe the requirements on problems
posed for the Mathematical Kangaroo from several perspectives in detail.

The final round in the problem-selection process of the several groups at the meeting consists
of polishing the selected problems. While there is no attempt at perfection made at this stage,
since the so-called “post-processing” is yet to follow after the meeting, this is still done as well
as possible. The phrasing of the problems is improved in the English-language originals that will
be given to the countries for translation into their own languages, for instance. This is obviously
a step that the group members not so comfortable with English as a working language do not
participate in actively. Also, some thought is given to lesser issues, such as the distribution of
correct answers, the quality of the graphics, and so on. Issues of this type will all be dealt with
after the meeting, as will be described in the following section.

2.2 Post-processing: Finalizing the international version of the Mathematical Kan-

garoo

After the annual meeting, the problem sets that have been selected by the working groups are fine-
tuned somewhat before they are handed over to the various national groups for translation into the
national versions. There are several reasons for the implementation of this process.

First of all, there are a few countries that use the official (English-language) version for their
competition as is, without creating a separate national version. For these countries, a version
must be created that is as free of errors as is humanly possible, with appropriately good versions
of graphics and optimized formulations of the problems and distractors. Also, the graphics are
created in a uniform version that is of a high quality, so that each country can use the official
graphics in their own print versions, without having to redundantly create their own. Finally, some
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problems may have errors in their preliminary versions that may have been missed during group
work, and such errors can be corrected before the translation process carries such errors over
into multiple versions internationally. A small group of experts in such matters create the official
wording of each problem as well as the official graphics in high-quality formats, and solutions are
written for some of the more difficult problems to make the national groups aware of particularly
tricky and interesting aspects of some of the more difficult questions.

In the last few years, this part of the process has become more important. Previously, it was
assumed that the tweaking of the problems would be done at a national level anyway, as the
various language versions are created. With so many member countries taking part in the Mathe-
matical Kangaroo now, it has become increasingly clear that the officially sanctioned versions of
the papers need to be as close as possible to a usable print version. Nevertheless, the completion
of the process is still done mostly at the national levels. Before we describe the national processes
in detail however, we turn our attention to the dynamics of the selection process, the sources of
conflicts during problem selection and to what extent suggested problems and selected problems
sometimes differ.

2.3 The Dynamics of Group Problem Selection, illustrated by the Student working

group

In this section we take a closer look at the process of selection using the example of the Student
working group. The details of the problem-selection process in the Student group have evolved
over time, and each year brings some new wrinkles. Still, the basic method of discussion and
selection has remained much the same over the course of the last two decades.

One important factor that may make the process in this particular case different from the work done
in other similar competitions is the sheer size of the group. With so many countries participating
actively in the problem-selection process, and many countries sending multiple delegates to the
annual meetings, all six working groups at the AKSF meetings tend to be quite large. In 2019, for
instance1, the Student working group was made up of 30 active members. It is not hard to imagine
that a detailed discussion of each individual problem is not easy in a group of this size. Once
you also take the language difficulties in such a group into account, it becomes clear that some
forms of systematic voting are required to organize the workflow. This is due to the fact that the
work in the group is done in English, and it is assumed that all participants have adequate working
knowledge of English for this purpose. Unfortunately, this is far from being the case, and some
aspects of the process must be organized accordingly.

In order to deal with this, much work is done in written form. Active participation in the discussions
of the group is generally restricted to the group members who feel comfortable speaking in English
in such a venue, and the others take part mostly through their votes and with occasional mathemati-
cal contributions presented at a blackboard or flipchart, such things being somewhat less language
dependant. When the group first convenes, the group chair has already prepared a short list of

1The 2020 meeting was held on-line due to the effects of the Covid-19 pandemic, and the dynamics of the

meeting were therefore somewhat atypical.
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about 50 to 60 problems (recall that 30 problems are required for the paper) according to the
online voting that was done in advance. Problems that were generally agreed to be unpopular, too
hard or ill-suited for the competition are therefore no longer under discussion at this point. An
exception occurs when some specific problem finds a champion who will argue its unique merits.
In this case, it may be decided after some discussion that such a problem may be added to the short
list, but a large number of proposed problems are then no longer in contention at all.

At this point, the short list has already been distributed to the group members, and they have
had a few days to take a (second) close look at the short-listed problems. Since all problems
that were considered appropriate by a majority of the people taking part in the advance rating are
generally included here, a small number of problems at most will be added to this version of the
list. One reason why the short list must often be augmented nevertheless, lies in the fact that it
typically does not include enough really easy problems. Interesting easy problems are few and
far between, and there are never enough of these proposed by the countries, despite the fact that
about 200 problems are proposed each year in the Student group. What easy problems there are,
are then often marked as uninteresting in the first round of rating. Of course, many of them are
indeed quite uninteresting from a strictly mathematical point of view. The members of the group
are all seasoned mathematicians and educators, and they have typically encountered variants of
some of these problems many times in various circumstances. It is no wonder that they find them
dull. Nevertheless, some “uninteresting” problems (in this sense) must be included in the paper
in order to offer some initial motivation for the slightly less interested participant to engage with it.

The discrepancy between “easy” and “interesting” is well known to the group, of course. There are
generally not enough appropriate easy problems submitted to the Student group by the problem
posers in the first place. Most problem posers that develop easier problems for the Mathematical
Kangaroo tend to suggest them for the lower age levels, as easier problems will usually also be
suitable for these. This means that the Student group will often have to resort to poaching easy
problems from the younger levels. This is not at all easy, as the more interesting of these problems
will typically be selected by the groups they were submitted to (as they are also dealing with a
dearth of good problems of this type), and so a typical tactic is to resort to creating variants. An
idea for a nice easy problem the group finds among the suggestions for one of the younger levels is
changed, with different numbers, different structures, or whatever is possible, as long as the result
is still easy and interesting, but sufficiently different that the two versions are not immediately
recognisable as clones.

This is a constant topic of discussion in the working group developing the problem sets for the
Student group. Some find it inappropriate to ask questions that could also, in principle, be solved
by much younger students, while others would argue that this is a good thing.

One good reason to limit the content of the problems to topics close to the school curriculum for
the age is motivational. It can be argued that students will engage more deeply with the material in
their regular classes if they have previously encountered closely related problems they considered
to be entertaining at a competition. For this reason, some would argue that the topics chosen for the
competition should all reflect some aspect of the students’ classroom work, albeit in a somewhat
entertaining setting. Unfortunately, strict adherence to this concept severely limits the possibilities
at our disposal. It therefore follows that there will always be intense discussions concerning the
inclusion of problems that could just as easily be posed at a younger age level.
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Once the structure of the short list has been agreed on, concrete problem selection begins. In a first
step, the most popular problems from the rating are pre-selected. These are generally problems
that no one rated as being unsuitable, and that received more ratings of “very nice” than just
“acceptable”. There are surprisingly few such problems in a typical list. If there are five such
problems among the 200 proposed problems, it is a good year; in some years there are just one or
two. These problems are considered individually by the group, and if there are no objections, they
are included in the paper. The next step is to choose the problems that will have the numbers 1 to
5 on the paper. In many ways, this is the most difficult part of the process. Sometimes there are
not even five candidates for this part of the paper available yet, and the group must go on a search
for candidates to be poached, but soon it is possible to start the voting process.

The working group votes on the problems by groups according to perceived difficulty. Once a list
of candidate problems has been made for a certain part of the paper, each member of the group
has as many votes as there are problems to be chosen. If there are nine candidates for the five
problems from 1 to 5, each member of the group gives their votes to their five preferred problems
among the nine, and the number of votes for each problem is then tallied. The problems obtaining
the most votes are then briefly discussed individually, and the problems 1 to 5 of the competition
are then chosen. At this point, the discussion already allows for the consideration of other aspects.
Some may be mathematical. For instance, the group will try to avoid choosing two problems
involving pure calculation among these five, or two similar problems involving triangles. Other
considerations may be practical. For instance, type-setting is always at the back of everyone’s
heads, although this is a minor consideration, of course. Still, two problems requiring very large
graphics will seldom be chosen to follow one another, for instance.

This general method is then followed for other groupings of problems in the paper. Next, an
analogous method is generally applied to select problems 6 to 10, then the problems from 11 to
20, and finally the 5-point problems 21 to 30. If some problems have already been pre-selected
at the beginning, some specific category may have less slots available. For instance, if there were
already two obvious 4-point problems selected at the outset, there may be only eight slots left for
the segment of 4-point items from 11 to 20.

Once the problems have been selected for each of the groupings, the problems are put into an
order that seems to be reasonable for the competition. There are several factors that can enter
into the discussion at this point. Primarily, the problems are sorted by rising levels of perceived
difficulty. An attempt is made to mix up the subject matter in as colorful and entertaining a way
as possible. The first few problems should be really, really easy and the last few (generally the
last three) can be somewhat difficult, giving the students with some background in higher level
mathematics competitions a chance to shine. These problems should still be solvable in a short
period of time, but some knowledge of Olympiad-style thinking might be rewarded here. There
is an active attempt made to avoid any such requirement in the rest of the paper, but it is assumed
that only the really knowledgeable students will get this far, because of the limited time available
to solve all the problems. Also, this is meant to limit the number of perfect scores. In actual fact,
it is not that unusual for there not to be any perfect scores at all in some countries in some levels,
especially the more advanced ones. For this reason, problem selection is often criticized as tending
toward a too difficult paper overall.
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2.4 Sources of Conflict
Now that we have finished our description of the process of problem selection in the Student
group, which is quite specific to this particular competition, we can turn our attention again to a
more general topic.

The Mathematical Kangaroo is meant to transcend countries, languages and cultures. There is
an ideological principle at the very foundation of the undertaking, in assuming the fact that the
fascination emanating from abstract mathematical thought is a universally applicable constant
independent of any cultural barriers. A popular trope often encountered in this context is that of
the “universal language of mathematics”. This is also an epithet commonly applied to the arts or to
sports. In the case of mathematics however, there is the implied added benefit of the utility of the
undertaking in the mix, since mathematics has proven itself so useful, particularly in the modern
technological world. For this reason, much is made of the fact that students all over the world can
be given the opportunity to work on the same problems, and generate the same positive feelings
when they make the same intellectual discoveries along the way, giving them a common goal in
the pleasant pursuit of a highly worthwhile pastime.

This is a wonderful unifying idea, and years of experience with this in practice do seem to confirm
its validity to a large extent. Nevertheless, finding a common base for the competition problems is
not as easy as one might think. In fact, there are several important differences to be dealt with in
reaching agreement on the problems of the common paper.

On closer inspection, one type of difference will usually turn out to be quite superficial. These
are the divergences resulting from the curricula specific to the various countries. Of course, such
matters need to be dealt with, but many of the difficulties resulting from this can be dealt with at a
national level. Still, there are some topics that need to be discussed again and again.

One such matter is the role of calculators in the classroom. While it is certainly the case that
some kinds of calculators are now in common use more or less everywhere, the way they are
used is not at all uniform. In some countries, they are simply tools used whenever very large or
unwieldy numbers arise. In many countries, however, the widespread use of calculators has led to
a situation where students are used to relying on their ubiquitous machines to such an extent that
they no longer develop any intuition for number properties of the type that would have been the
norm before calculators became common, and are still so elsewhere. An argument (that the authors
of this paper are highly skeptical of) can be made, of course, that such a type of number intuition
is not worth the time spent in developing and cultivating it. In some countries, this argument has
been widely (and often just implicitly) accepted in the schools, and because of that, students from
such countries have a completely different view of problems concerning number properties than
would students habitually used to doing some mental calculation.

An example of such a problem is the following 4-point item, taken from the Student paper 2019:
A) What is the integer part of √√√√

20 +

√
20 +

√
20 +

√
20 +

√
20?

(A) 4 (B) 5 (C) 6 (D) 20 (E) 25
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At this point, we should recall that the use of calculators during the competition is not allowed in
the Mathematical Kangaroo at all. The very existence of this rule is a bit contentious, although
it is accepted as given in the AKSF organization. There is great resistance to the idea that a
large number of traditional types of problems like this one could no longer be reasonably posed
if calculators were available. If students were allowed to use a calculator to answer this question,
there would be nothing of interest to it at all, as the expression could simply be typed in and the
result read out in the calculator’s display. Students used to calculators being available for any and
all number-related activities will therefore need to give this problem more thought than students
more schooled in the recognition of number structure. Such students may more readily have the
essential idea of working from the inside-out and realizing that all the numbers we are taking roots
of are all slightly less than 25, and their roots therefore always slightly less than 5, making the
answer obvious. Students whose only idea is to calculate the result with a machine will find it
much harder to overcome the urge to calculate from the outside inward, in the way one would
input such an expression with the aid of a keyboard.

This example should give an idea of the difficulties the international group must deal with in
determining the relative difficulty of a selected problem. Numbers are only one example of
the discrepancy resulting from differing use of technology. Another such example is that of
functions. If students are very used to (and possibly dependant on?) graphing calculators to
visualize functions, they will have a completely different attitude to problems concerning functions
than will students not used to relying on such technology. This will also play a role in the rating
process, of course. Another area of concern is geometry. In some countries, elementary Euclidean
geometry has been all but completely phased out of the schools, while it is still an important part
of school mathematics elsewhere. It is quite clear that this will make it difficult to agree of the
levels of difficulty of problems in this topic area in the Mathematical Kangaroo. This is actually
an omnipresent point of contention, as problems in Euclidean geometry are quite popular among
the problem posers.

This last point brings us to the matter of differing traditions in the teaching of mathematics. This
is closely related to the question of curricular differences, but not exactly the same. An example
of this would be the matter of solid geometry. In some curricula, solid geometry is a topic dealt
with in an exclusively analytic fashion, while others place more value in visualization of three-
dimensional objects and positions. Because of this, any question set in three-dimensional space is
considered quite difficult by most problem posers, even though some of these problems are of a
very elementary type for students used to this type of thinking.

Finally, there are also differences in personality and experience among the members of the problem-
selection group to be considered in this context. The different members of the working groups
come from quite different backgrounds. Some are research mathematicians, some are math education
researchers, and some are active teachers. Many at this level have a background in working
with gifted students, and specifically they often have backgrounds in working on Mathematical
Olympiads. It is easy to imagine the disparate standpoints that result from such diversity. This is,
of course, one of the strengths of the Mathematical Kangaroo. Having all of these different points
of view actively involved in the problem-selection process is a great asset in creating a high-quality
paper. The discussions leading to this result are, however, not always easy.
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2.5 Why suggested problems are often not equivalent to selected problems

All suggested problems which are selected for the competitions are automatically edited with
respect to linguistic aspects for the official English-language version.

Sometimes the experts decide to additionally modify some content related aspects of certain tasks,
as the following example of the Junior paper 2021 shows. The problem was originally suggested
as a 3-point problem in the following formulation:

B) Ahmad walks up 8 steps going up either 1 or 2 steps at a time. There is a lion on the 6th step,
so he cannot stop on this step. In how many different ways can Ahmad reach the top step?
(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

The problem was selected by the international Junior group, and the formulation was slightly
modified (modifications are highlighted):

B1) Ahmad walks up 8 steps going up either 1 or 2 steps at a time. There is a hole on the 6th step,
so he cannot use this step. In how many different ways can Ahmad reach the top step?

Nobody would argue that replacing the lion by a hole really changes the intention of the author
of this problem. But at the same time, the expert group increased the plausibility of the task
(why would somebody climb over a lion?). Furthermore, it was selected as a 4-point problem as
students need a multi-step argument by first noting the necessity of splitting the path into two parts
and then counting the number of possibilities for each of the subpaths, consisting of steps 1-4 and
6-8 respectively, and finally multiplying these numbers.

This example shows that, beside linguistic smoothing, the contents of problems are occasionally
modified as well (in this particular example in a minimal way).

In addition, a crucial fact in any popular competition, and this is especially true for multiple choice
competitions, is that the structure of the problems is just as important as their intrinsic mathematics
and its formulation. The selection of options given for the solutions (in other words, the “multiple
choices”) play a central role. Some such problems are structured in such a way that the specific
distractors offer aid in solving the problem. On the other hand, certain specific incorrect answers
are often offered specifically with the intent to entice contest participants making predictable types
of logical errors (so called traps).

Therefore, it is comprehensible that major modifications are being made by the changes of distractors
implemented in some problems by the working groups, either to fulfill general agreements on
distractors (controlling the difficulty of the task) or in order to enrich the problem.

We will now show examples for each of these types of modifications of distractors:
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First, let’s have a look at the following 3-point problem which was chosen for the
Student paper of 2020 as an example:
C) The sum of five three-digit numbers is 2664, as shown on the board. What is
the value of A+B+C+D+E?
(A) 4 (B) 14 (C) 24 (D) 34 (E) 44

These distractors are different to those in the problem as it was originally
submitted:
(A) 14 (B) 24 (C) 104 (D) 124 (E) none of the previous

There is a broad consensus within the international expert’s group that 3-point problems (of every
level) should not contain distractors which open the problem. Hence the distractor (E) of the
submission had to be modified in order to choose the problem as a 3-point problem for the
competition. Furthermore, the international group was of the opinion that the distractors (C) and
(D) were not plausible as the sum of five digits can obviously not be greater than 9 · 5 = 45. But
the problem stated as in C), is easier than with the originally suggested distractors, because all of
the incorrect answer options are part of the distractor “none of the previous”. The fact that only
24 is in the right range of approximately achieving 2664 as the sum should be clear at first glace
without any calculation. This seems to be a deficiency of the modified version (and hence of the
chosen problem). The reason why - for instance – 26 or 22 was not included in the list of the
answer options may be explained by the fact that the task is just worth 3 points – hence it should
not contain any traps (e.g. answer options representing certain attractive but incorrect trains of
thought) and give all participants a realistic chance of solving the problem, either by calculation
or by estimation.

Beside the special requirements on distractors of 3-point problems, the international experts sometimes
just think that the suggested distractors do not fulfill the requirement of being “distracting”. As an
illustration of this, we consider the following 5-point problem of the Junior paper of 2021:

D) Let N be the smallest positive integer whose sum of its digits is 2021. What is the sum of the
digits of N + 2021?
(A) 10 (B) 12 (C) 19 (D) 28 (E) 2021

As N is to be as small as possible, it must contain as few digits as possible. This means it contains
as many nines as possible, and the number in question is therefore N = 59. . . .9 (a 5 followed by
224 copies of the digit 9).
The simple calculation N + 2021 = (N + 1) + 2020 gives us 60. . . 02020, and therefore the sum
of the digits of the number in question is 6+2+2=10.
The other answer options are the consequence of the following train of thought: It is easy to
conclude very quickly that the number we are looking for must be very small. If the solver takes
into account that the number has the remainder 1 when dividing by 9 (as N and 2021 both have
the remainder 5), it then remains to carefully check the answer options (A), (C) and (D).

When the task was originally proposed by one of the two authors of this article, the distractors
were quite different, namely
(A) 10 (B) 12 (C) 2021 (D) 2023 (E) 4042

The number 2023 was given as a distractor to make the option 2021 seem reasonable, as this
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distractor would otherwise seem to be implausible. 4042 was meant to attract inaccurate readers
of the task, who might think that adding 2021 and 2021 would solve the problem. The idea of
considering residue classes modulo 9 - which excludes all of these original incorrect answers
apart from 4042 - was not considered as the key strategy for attacking the task by the poser. As
always, the way of attacking and solving such a problem is based on the knowledge of the students,
which varies in the participating countries. In Austria, only very few students are aware of residual
classes. Without any doubt, the task was made more difficult by changing the distractors, by si-
multaneously letting 2021 be an outstanding and therefore unattractive option.

This example shows that much more consequential changes can take place during the problem-
selection process than simple issues of formulation.

3. National problem selection – Round 2

3.1 Introductory remarks

So far, we have described the process of choosing a problem set in an international context, using
the example of the Student working group. Of course, this process is quite similar in every other
subgroup dealing with the other levels of the Mathematical Kangaroo. Now we will take the next
step and consider the work that follows at the national level in order to finalize a particular national
version of the competition – versions that students are eventually working on. We will discuss this
using the example of the national working group in Austria, as both authors have taken part actively
in this process for many years. It should be mentioned that due to organizational, curricular and
minor linguistic differences this process takes place independently from the analogous process in
Germany and Switzerland, despite the common language. A detailed description of the German
(and Swiss) process can be found in Noack & Unger (2020).

3.2 Translation and the first impression

The multi-step process starts immediately after the final international version is made available.
The first step is the initial translation of the problems. One person is responsible for providing a
preliminary translation, including the answers and a rudimentary version of the figures, for each
level. From this point on, national experts are consulted and these accompany all remaining
steps. This group consists of active and retired teachers, researchers, university students and
former participants of Mathematical Olympiads. The high quality of the competition can only
be ensured through these different experiences and the multi-layered fields of expertise of the
members of the group. Additionally, various detailed discussions of individual problems and
multi-step engagement with the tasks greatly reduces the likelihood of any serious errors.

First of all each member of the group is asked to solve the problems of levels they feel the greatest
affinity for (perhaps because of the grades they teach or because of their Mathematical Olympiad
background) and to make any suggestions for improving the (German) formulations. Greatest
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attention must be paid to the individual language during translation of the items (to actively avoid
creating ambiguities), due to the huge amount of text involved. Simultaneously, they are asked to
assess the level of difficulty of every individual problem and of the problem sets in total. Their
proposals are then incorporated into a second version, with conflicting opinions marked as such.

3.3 Preparing a preliminary national version

Next, the national group meets in person to discuss certain critical formulations and to finalize
the problems from a linguistic point of view. At this juncture, items considered inappropriate for
whatever reason are replaced by items from the reserved list. This is actually quite a common
occurrence, as not all problems fit in the particular curriculum of the intended grades. Sometimes
there is also broad agreement that two specific items should be switched within the problem set
because the assessed relative difficulties differ from the initially intended order. At the end of the
meeting, the order of the items within the problem sets is considered final.

For several years, this step was carried out at one meeting. Since there are now six levels, the
workload is too large and therefore it was split into two meetings (at different locations) and each
of these meetings deals with three levels, with each meeting typically lasting half a day. (It should
be noted that this will be different in the year this is being written, unfortunately. Due to the
constrictions of the Covid-19 pandemic, the meeting had to be replaced by online communication,
as is the case with so many activities in 2020 and 2021.)

The revised version is then once again made available to the entire group. New figures are created
at this juncture, if necessary. Despite the excellent quality of the figures now made available
internationally during the finalization process described in section 1.2., this is often still required
to some extent. It is quite common for pictograms and figures to include labels or even words that
are in common use in English-speaking countries, but would be considered unusual for Austrian
students. For instance, the label “O” for the circumcircle of a triangle is always replaced by “U”
(short for “Umkreismittelpunkt”) in the Austrian version. Sometimes, such minor changes can
even make it necessary to redraw the entire figure.

In addition to all the editorial changes and new figures being incorporated into the files as required,
there are also some other details to deal with. Cover sheets are added, containing fields for students
to enter their solutions as well as some information about the competition. Furthermore, at this
time, a solution grid containing the letters for the correct solutions to all problems in all the levels
is written.

3.4 Finalizing the national competition: Preparing the competition for Austrian

students

At a third - and crucial – step, the entire group meets in one place for two days. At the beginning
of this meeting, everyone solves problems in levels they are not yet familiar with. This ensures
that more people (and, critically, not always the same people) read and solve the problems. Some
of the items may still contain typos or some minor residual issues of formulation, and these can
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be fixed quickly. At this stage, we would hope that there are no more issues concerning ambiguity
due to the wording, but this can occasionally still be the case, and it is important that they be
discovered. Linguistic ambiguities must absolutely be avoided, but at the same time care must be
taken that no new ones arise at this point because of hasty changes made before fully reflecting on
their consequences. Therefore, despite the rather large workload, this process is carried out very
carefully.

There follows a further round of discussion and final versions of the wording are fixed for each
item as the consensus of a large part of the group. Rare incidents of incorrect interpretation of
problems during this penultimate phase show how important it is for as many different people as
possible to read and check the formulations of each item at different stages of development.

Finally, the problem sets are formatted. The main problem at this point is inevitably: How can
we possibly place the huge number of figures on the limited number of pages determined by the
print format? At least three people then independently confirm the solution grid for each level,
because these will ultimately serve as the sole basis for grading the students’ submissions and
therefore may not contain any errors. On the second day, in addition to completing these tasks, all
the problem sets, solution grids and accompanying peripheral documents are subjected to a last
round of proofreading and solutions for as many problems as possible are written. The latter are
made available on the public website after the competition has been closed (see Kangaroo Austria,
2021).

This multi-step process shows that the national group is very much aware of both the linguistic
and mathematical challenges of the competition. Beside linguistic issues, the levels of difficulty
must be wisely adjusted to the specific level appropriate for Austrian students by interchanging
and rearranging some of the problems. Sometimes problems are even modified in a major way, as
we point out in the following section.

3.5 Major modification of individual problems – analysis of a particular problem

The following 5-point problem was chosen for the Junior level 2021 at the international meeting:

E) How many five-digit positive numbers have the product of their digits equal to 1000?
(A) 10 (B) 20 (C) 30 (D) 40 (E) 60

We start our analysis with a possible solution of the problem: On the one hand, such a number
must contain the digit 5 three times. On the other hand, the product of the remaining two digits
must be eight in order for the product to equal 1000 = 5ş · 8. There are two options that yield
this, as we have 8 = 1 · 8 = 2 · 4. It follows that there are two variants of how a number with
the required property can be assembled. Either it consists of the digits 1, 5, 5, 5, 8 or of the digits
2, 4, 5, 5, 5. Both cases are of the same combinatorial type, and there are

( 5
3,1,1

)
= 5!

(3!1!1!) = 20
different numbers of each. A total of 40 numbers have the desired property, and so (D) is the
correct answer.

Analysing a problem of the Mathematical Kangaroo, it is always necessary to look at the answer
options. In this case, only distractor (B) seems to be an attractive alternative, as two possible errors
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lead to this answer: Either a solver forgets one of the two cases or he or she overlooks the fact
that a number is not already determined by the positioning of the three fives among the digits -
there are two possibilities for the remaining two digits - and considers both cases. The further
options can only be chosen by pure guessing, by unsystematic approaches or by multiple errors in
an unclear way.

At the Austrian version of the Kangaroo, the following was one of the 5-point problems at the
Junior level in 20212:

E1) How many four-digit positive numbers have the product of their digits equal to 100?
(A) 6 (B) 12 (C) 16 (D) 18 (E) 24

Although the problem seems to be very similar to the version above, it differs in a fundamental
way: Starting with the same initial ideas, the student deduces that the number must contain the
digit 5 twice and the product of the remaining digits must be 4 = 1 ·4 = 2 ·2. Hence, there are two
different cases, as one of them requires the multiple occurrence of a second digit. This reduces the
number of solutions by the factor 2 in this particular case (6 solutions with digits 2, 2, 5, 5 and 12
solutions with digits 1, 4, 5, 5). As the number of solutions is smaller altogether, a systematic way
of counting (without using combinatorial formulas) is feasible in a reasonable amount of time.
At the same time, the combinatorial arguments are more complex, as both cases are of different
types. The problem is therefore enriched through the adaptation to the new version with two cases
which can not be dealt with analogously, while simultaneously reducing the complexity, because
the respective number of solutions is reduced. Looking at the distractors of E1), we see that each of
the incorrect answer options is initially plausible: (A) and (B) are achieved as solutions when the
student forgets to consider one of the two cases (or miscalculating the case 1, 4, 5, 5), (E) matches
with the error of considering both cases like 1, 4, 5, 5. Finally, distractor (C) is meant to attract
students who create a list of solutions in an unstructured way.

Summing up, the Austrian experts took the problem as a basis for developing an even more
attractive problem,

• by widening the possible methods of finding a solution (by reducing the number of solutions),

• by mathematically enriching the task, as both cases must be dealt with in different ways and

• by creating more plausible distractors.

Very few problems are modified in that way, but it should be noted that this type of change is not
a specifically Austrian phenomenon, and is actually done in many of the countries participating in
the Mathematical Kangaroo, as we discuss in the following section.

3.6 National competitions: is there an unambiguous Kangaroo competition?

Whereas the vast majority of the problems are just translated within the national rounds of fine-
tuning of the competition, as pointed out in the previous section, major modifications of the

2The German translation of the problem can be found in Mathematical Kangaroo Austria – Junior

(2021), p.4.
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internationally chosen problems can sometimes take place during this process.

Along with these obvious changes, however, we also want to demonstrate that the usual way of
editing the internationally chosen problems can sometimes lead to problems which seem somehow
different at first glance.

As an example of this, we will now discuss problem B) of section 2.5. again and compare the
German and the Austrian versions of the problem with the problem as it was selected by the inter-
national group.

First of all, here is (again) the problem as it was chosen by the international Junior problem group:

B1) Ahmad walks up 8 steps going up either 1 or 2 steps at a time. There is a hole on the 6th step,
so he cannot use this step. In how many different ways can Ahmad reach the top step?

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

The Austrian version of the competition reads as follows (Mathematical Kangaroo Austria - Junior,
2021, p.3.):

B2) Andrea steigt acht Stufen hinauf. In jedem Schritt nimmt sie entweder eine Stufe oder zwei
Stufen auf einmal. Die sechste Stufe kann sie nicht benutzen, weil sie kaputt ist. Auf wie viele
verschiedene Arten kann Andrea die achte Stufe erreichen?

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

Translation of the task:
Andrea walks up eight steps. At each move, she takes either one step or two steps at once. She
can’t use the sixth step because it’s broken. In how many different ways can Andrea reach the
eighth step?

The German version of the problem3 is stated in this way (Mathematical Kangaroo Germany,
2021, p.2.):

B3) Ein Frosch möchte einen Teich überqueren. Er nutzt 7 Seerosenblätter in einer Reihe. Er
springt immer nur 1 oder 2 Seerosenblätter vorwärts. Das 6. Seerosenblatt muss er überspringen,
weil es welk ist. Wie viele verschiedene Varianten gibt es für den Frosch, den Teich auf diese
Weise zu überqueren?

3In Germany, the name for this level is “Klassenstufen 9 und 10” (class 9 and 10) instead of “Junior”.
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(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

Translation of the task:
A frog wants to cross a pond. It uses 7 water lily leaves in a row. He only jumps 1 or 2 water lily
leaves forward at a time. He has to leave out the 6th water lily leaf because it is wilted. How many
different ways are there for the frog to cross the pond in this way?

The reason why the Austrian formulation of the problem includes the “eighth step” is that the term
“top step” may be misleading. The German version offers an elegant way to get rid of the this
potential inaccuracy by assessing the other end of the pond as the “top step”.

The example points out that the representation of the internationally selected problems at the
national competitions differ – ranging from minor differences in notation (or terms) to major
differences concerning the content of the task or even additional figures. These modifications
definitely even result in different options toward understanding, attacking and solving the problem.

Revisions of internationally selected problems are intentionally carried out by the German group.
The goal is to preserve the mathematical content of the tasks, and change the ”storyline” of
often inner-mathematical or implausible contents in order to motivate the students working on
the problems (see Noack & Unger, 2020, section 4.5).

4. Conclusion

It is a long and multifaceted path from the submission of a problem to its final appearance in
each of the national versions of the Mathematical Kangaroo. In this article we have depicted this
path chronologically, starting from submitted problem suggestions and ending with the versions
as they eventually appeared in the Austrian competition papers. There are multiple options for
the modification of chosen problems that can be done without actually replacing it altogether.
This ranges from linguistic revision to translation and from changing particular distractors to
modifying the complexity of the given numbers within the tasks. These modifications are generally
undertaken for good reasons. Perhaps the goal may be improvement of the cognitive demand of the
task (by changing distractors, for instance), or changing the complexity of calculations required to
solve the task. As described in section 2.4., in some cases it is possible to simplify calculations and
simultaneously increase the attraction of the incorrect answer options, which definitely enriches
the problem. There are two main criticisms that apply to major modifications of this kind.

First, modifications that go beyond linguistic aspects change the suggested problem in such a way
that it may not really represent the problem poser’s initial concept and idea anymore. Second, if the
distractors are modified by one group of international experts (and not accepted as they are by the
bigger group of international experts suggesting the problems), this unification of preferences may
increase the chance for students to solve problems via test-wiseness (see Donner et al. 2021) or
convergence strategy (see Andritsch [Donner] et. al. 2020). Sometimes, the idea of the suggested
problem is fabulous, but modifications must be done due to linguistic issues or because of typos
within the distractors. Perhaps deeper discussion is warranted with respect to the extent to which
the group should be allowed to redesign problems. There is, of course, always the option to choose
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a different problem out of the extensive amount of problem suggestions, which may not have to
be modified at all. With regard to this aspect, the board of the AKSF organization is constantly
trying to increase the quality of the problem suggestions of their members by providing templates
and pointing out the need of high-quality problem suggestions whenever the opportunity to do so
arises. Additionally, in recent years, more and more effort has been put into a finalization process
meant to result in an optimal final version of all problems that could, in principle, be used as is, if
an English-language version is acceptable in a participating country.

It should be pointed out that most of the suggested problems are not modified in such a large scale
as the examples cited in this article. As major modifications are only performed on a very small
number of problems and as at most 5 problems can be replaced in the national paper altogether,
(usually from the “reserved” list of pre-approved alternates) the core and heart of the competition,
consisting of the problems which had been suggested in advance and then chosen within the inter-
national meeting, remain – even in the national versions of the competition. Both the experienced
international group and the national groups of experts try to create a competition which is as
attractive as possible for the participating students in each country. All changes along the path from
suggestions to the final competition are made for this reason and can therefore also be justified in
a comprehensible manner. Effects of modifications of problems on the motivation of the students
on the one hand and the approaches of the students when facing different versions of the “same”
task on the other hand are part of current investigations of the authors. Preliminary results have
already been obtained. It should be emphasized that the wealth of experience regarding the Mathe-
matical Kangaroo and the varied backgrounds of the members of the international and national
groups ensure the attainment of the ultimate goal of offering a competition that is both exciting
and challenging on multiple levels. After all, the ultimate purpose of the competition is to enable
as many young people as possible to enjoy mathematics for the duration of the competition - and
beyond.
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Abstract
The purpose of this article is to describe Hungary’s high school mathe-
matics journal, KöMaL, its young sister-journal, Abacus for students
in Grades 3-8, and my own efforts in the United States to emulate
these publications – thereby providing an opportunity for year-round
creative and competitive problem solving for students year after year. I
strongly recommend the creation of similar journals in other countries
as well, especially in smaller countries, where the graders might not be
overwhelmed by the huge number of responses. Conducted properly
with challenging and interesting problems, one can be ensured that in 2-3
generations problem solving will become an intellectual habit among the
students, strongly supported by their parents and even their grandparents.
That’s what happened in Hungary and that led to Hungary’s excellence in
mathematics and the sciences.

Preliminaries

As an immigrant to the United States, I always considered my foremost duty to introduce to my
adoptive land the treasures that I brought with me from “the old country”. Therefore, after I
settled into the teaching profession and became familiar with the American competition scene in
the area of mathematics, it was natural for me to reflect upon its weaknesses and the strengths of
the Hungarian system I left behind. I was missing KöMaL, Hungary’s high school mathematics
journal and its challenging problems month after month.
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KöMaL stands for Középiskolai Matematikai Lapok (in
English, High School Mathematics Journal), to which I
subscribed as a high school student. It was so dear to
me that even when I left Hungary, crossing the border
to Austria on foot with a small bundle on the 29th of
November 1956, I brought three of its issues with me
since I did not yet manage to read them thoroughly.
They served as my talisman during my many years of
struggle to create something similar in the United States
and beyond. I show them here as a reminder of those
intentions.
In the present note, I will reflect on two of my attempts of
30-40 years ago to emulate KöMaL. I will also introduce my readers to Abacus, the sister-journal
of KöMaL, wishing her belatedly a happy 30th birthday. By doing so, my purpose is to encourage
small countries with demographics similar to that of Hungary, to create their own Competition
Corner / USAMTS programs. If they do so and if they keep their programs alive and well, then I
can promise that in 2 or 3 generations they will rival the rest of the world in mathematical power.
That’s what Hungary has done ever since the birth of KöMaL more than 125 years ago.

Historical sojourn

Hungary was established with the Conquest of the Carpathian Basin by the Magyars in 896.
Thereafter Hungary (in Hungarian, Magyarország, i.e., the country of the Hungarians) was recognized
as a sovereign country until 1526, when in the Battle of Mohács, the Ottoman Empire subdued the
Kingdom of Hungary. The occupation of most of Hungary by the Turks ended in 1686, but rather
than regaining its independence, Hungary became a vassal state of the Austrian Habsburg Empire.
Following several unsuccessful wars for independence, it was not until the 1867 Compromise that
Hungary regained much of its independence.

At that time, huge efforts were made by Hungary to catch up with the rest of Europe in nearly
every walk of life. Roads and railroads were built, bridges were erected across the Danube, and
the navigation of her rivers and Lake Balaton were made possible. Hospitals and other public
buildings were built, including 400 schools across the country. Nevertheless, centuries of foreign
exploitation and the lack of even rudimentary industry and commerce, made Hungary a ‘3rd –
world’ agricultural country with an outdated feudal system and mentality, not much different than
many countries of Africa and the Middle East, artificially created by the colonizing powers after
they extracted most of the valuables of the land and disrupted the governance of the people.

Left to her own devices, Hungary had to lift herself by her own bootstraps in order to catch up
with the rest of Europe in nearly every walk of life. That’s when the famous Kürschák Com-
petition was initiated, the Eötvös College for properly trained teachers of mathematics and the
sciences was established, as well as KöMaL was launched. Along with the formation of scientific
organizations, these were the instruments that made Hungary into a mathematical super-power in
the 20th Century. Of these, I will write about the humble beginnings of KöMaL, believing that
many other countries have dedicated teachers like the late Dániel Arany was, and hence other
developing countries can come up with their own versions of KöMaL.
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The birth of KöMaL

KöMaL was launched in 1893 in the small,
but progressive town of Győr by Dániel Arany,
a teacher at the local science high school.
Arany sent a copy of it to every high school
in Hungary. Nevertheless, relative to the
many other happenings, it was a small event
that probably went unnoticed by everyone
except for the students who responded to its
problems and the teachers who subscribed to
the publication.
From the outset, KöMaL appeared 10 times a

year, with each issue consisting of 16 or more pages, and in its first 3 years, the publication featured
239 problems. To 208 of those problems a total of 1055 solutions were submitted by 151 students.
And even in its first year, there were 132 subscribers to it due to the tireless correspondence of
Dániel Arany with many teachers throughout the country. He was eminently cultured, with fluency
in German, French and English and knowledge of Latin and Greek too. His knowledge of French
made it possible for him to become familiar with the Journal de Mathematiques Elementaires for
talented high school students. While his KöMaL emulated that publication, he went much further.
For example, by featuring the matriculation examinations of the high schools across the land, he
helped in the uniformization thereof.

Admittedly, Hungary was a larger
country then, as indicated by the
map on the right, and Budapest was
not the only city of importance in the
country. Pozsony (now Bratislava
in Slovakia), Kolozsvár (now Cluj-
Napoca in Romania), Kassa (now
Kosice in Slovakia) and Nagyvárad
(now Oradea in Romania), to
mention just a few, were rival
cultural centers. With their loss, the
importance of Budapest increased,
and it was fast emerging as an equal
of most European capitals.

Thus, when Dániel Arany turned over the editorship to László Rátz, a highly regarded mathema-
tics teacher in Budapest, it became possible (and necessary too) to centralize the entire operation.
But it was only after its second rebirth following World War II that KöMaL’s problems became the
ingredients of year-round nationwide competitions. Nowadays and 4 generations later, thousands
of students submit solutions to the problems of KöMaL, to be graded by former successful contestants
studying at the universities of Budapest. Everyone, who might start such a program must aim for
such a support system in the long run.
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The ‘Competition Corner’ in the Mathematics Student journal

In the United States it was not until 1952 that the National Council of Teachers of Mathematics
(NCTM) published the first issue of the Mathematics Student Journal. It was just a pamphlet
of 4 pages, which, unfortunately didn’t grow into more than 6 pages over the years. Its Problems
Section was edited by Mannis Charosh, who stayed with it until 1964, at which time he published a
selection of its problems under the title Mathematical Challenges. Later the editor of the journal
became Thomas Hill, who published Mathematical Challenges Plus 6, covering the problems
proposed between 1965 and 1973 (the ‘plus 6’ in the title referred to 6 articles from the journal,
3 of which were authored by students). By the time my friend, Dr. David (Dave) Logothetti took
over the editorship in 1978, the name of the journal had been shortened to Mathematics Student
(MS); that’s how I will refer to it in the future. By naming me editor of the Problem Section and
giving me a free hand with it, Dave gave me my first opportunity to emulate KöMaL in America.
I renamed the Problem Section ‘Competition Corner’; that’s how I will refer to it in the sequel.

While the circulation of the MS was at 30,000, it was not available to individual student subscribers,
but was sent mostly to teachers in bundles of 5 or 30. Seeing the relatively small number of
submissions to my predecessor, Steve Conrad, as the editor of the Problem Section, and wanting
to make sure that the best students in the country were also aware of the Competition Corner,
I made arrangements to obtain the home addresses of the students who made the national Honor
Roll on the American High School Mathematical Examination (AHSME), i.e., scored 100 or more
out of 150 points and did not yet graduate from high school. I wrote a personal invitation to all of
them and was pleased that many of them accepted the invitation. I did the same in the next two
years and hence, we ended up with well over 500 participants during the 3 years of my involvement
in the program

I used the space allotted to me by Dave (exactly half of the 4 or 6 pages) to conduct year-round
competitions with 5 problems per round, i.e., per issue of the year, which was 8 in the first year
(8 issues of 4 pages) and 6 in the next two years (6 issues of 6 pages). The students were always
given a month to solve the problems and I tried to report back to them with an evaluation of their
submissions in a month also, though the solutions to the problems did not appear in theMS until
later.

Being a one-man operation (with some essential help by my wife, Kay) in addition to a heavy
teaching load at a state university, not only did I have to select the problems to be posed (with the
help of a ‘Call for Problems’ to mathematical friends), but I did all the grading and correspondence,
and kept the scores in a ‘hand-operated database’. After preparing the solutions, Kay typed them,
and along with the new set of problems and some additional materials, I submitted them to Dave.

The arrival of Abacus

A decade later in Hungary, working behind the scenes in a remote region of Hungary, a young
mathematician by the name of Sándor Róka decided that the students in middle schools should
also have a journal. Hence, he and his wife, Bea, an award-winning teacher of physics, created
Abacus – shown below, along with a picture of Sándor, a map of present-day Hungary and of the
region, where they tested the prototype of Abacus on the students.
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By ‘prototype’ above, I mean 4 years of sending out a
set of 8 problems, different sets for students in Grade 4, in Grades 5 & 6 and in Grades 7 & 8 for
students in the region, grading the submissions by the students, and sending them an evaluation of
their work along with the official solutions to the problems and the new set of problems – 8 times
a year. They handled it as a small business, and hence there was additional accounting, reporting
and lots of correspondence as well – handled most efficiently by Sándor and Bea Róka.

Their correspondence course in problem solving became a bonified journal in 1994, just in time
for the 100th anniversary of the birth of KöMaL. They named it Abacus and added a number of
new columns. I will comment on those new columns later; presently, I want to focus only on the
columns of mathematical problems, emphasizing that the scores for the solutions of the problems
in Abacus are also accumulated over the year, a report on them is published in Abacus, and the
pictures of the most outstanding problem solvers, separated by their grade levels are featured, just
like in KöMaL. At the end of the year 20 students per grade are honored in such manner.

Needless to say, the publication of Abacus was well received not only by the students and their
parents, but by the educational community as well. As a consequence, the János Bolyai Mathe-
matical Society accepted the challenge of taking over the editorial duties, as well as the numerous
other responsibilities of publication in 1998, and Abacus soon grew up to be a proper sibling to
KöMaL. Presently, Abacus appears 9 time a year on 48 pages in each issue.

The USA Mathematical Talent Search (USAMTS)

My next opportunity to create something KöMaL-like came after moving to Terre Haute, IN, in
1988 to chair the Department of Mathematics at Rose-Hulman Institute of Technology (RHIT). As
I was proofreading a congratulatory piece that I wrote on the 25th anniversary of the Wisconsin
Talent Search in my regular ‘Problems, Puzzles and Paradoxes’ column in Consortium4, it seemed
reasonable to ponder on the possibility of launching a similar program nationwide. After discussing
the matter with members of my faculty and key personnel of the school’s administration, as well
as with my friends Sol Garfunkel5 and Walter Mientka6 and after making the appropriate mathe-
matical preparations, we were ready to launch the USAMTS under the auspices of COMAP via a
separate column in Consortium.

4A quarterly publication by the Consortium for Mathematics and Its Applications (COMAP)
5Executive Director of COMAP
6Executive Director of the CAMC (Committee on the American Mathematics Competitions) in the MAA

(Mathematical Association of America)
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We decided on 4 rounds of 5 problems per year. I asked Walter Mientka for the home addresses of
the participants of AIME, wrote my letters of invitation to the students, and we were ‘ready to roll’.

My main regret is that I did not change the term ‘Search’ to ‘Development’ in the name of the
program in order to reflect its true nature. Moreover, I also regret that in the second year, when
we started to send the students a USAMTS Newsletter, I didn’t coin a fancy name like The Ma-
thematics Competitor for it. Then it might have had a chance to grow into a proper journal.

More about KöMaL

Since KöMaL predated the other three start-ups by 85 or more years, clearly, I must explain
the situation in Hungary at the end of the 19th Century more comprehensively. While it is true
that the country was jubilant after the Compromise of 1867, it is also true that there were many
different nationalities living within the borders of Hungary, and not all were elated. In particular,
they did not welcome the ‘Magyarization’ efforts of the Hungarians towards the end of the 19th
Century, which can be explained only as an unfortunate imitation of centuries of unsuccessful
‘Germanization’ efforts in Hungary by the Austrians.
Even at the time of The Conquest of 896, the Hungarians were accompanied by tribes of other
nationalities who settled in various parts of the country including the bordering areas, which they
agreed to defend in case of war. Later, after the Mongolian invasion during the first decade of the
13th Century, other nationalities were invited to settle parts of the country, where the most people
were lost. Hungary was also home to many Gypsies and Jews, as well as Serbs and other people of
the Balkans fleeing the Turks. Many Austrians, Saxons, Swabians and other Germanic people also
found a home in Hungary after the Ottoman Empire was forced to give up Hungary’s occupation
after 150 years but left much of the countryside torched and with hardly any population.
Unfortunately, the otherwise peaceful coexistence with the minorities within Hungary’s borders
was drastically changed by the Dictate of Trianon at the end of World War I, which robbed
Hungary of more than two-thirds of its land, two-thirds of its population, much of its natural
resources (forests, mines, etc.) and many of her major cities / cultural centers. Thus, the present-
day Central-European countries are not very different from many of the countries of Africa and
Asia whose borders were drawn arbitrarily by the former colonizing powers, and fail to reflect the
national, tribal, religious, ethnic and linguistic divisions of the land.
Consequently, it was near-miraculous that KöMaL could be
revived and that by the 1930s it was once again the main mathe-
matical talent-development program in Hungary.

Yet more about KöMaL

Jumping ahead by several years, I show on the right the Centennial Issue of KöMaL, published
in December 1993, along with its English equivalent (in the center) and a second English issue,
published in August 1994. In view of the fact that I needed some prizes for the winners of the
USAMTS, and that they were affordable, I ordered over a hundred of the English language issues,
thereby subsidizing their publication. Using them as prizes, I spread the information about KöMaL
among the USAMTS participants.
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Later I came up with the idea of collecting into
a special volume the problems and solutions
that appeared in KöMaL during the first few
years of its second century. Hence, C2K was
born, covering the years 1994 to 1997, and
once again, I ordered many copies thereof.
Next, a follow-up to that was also published
and called C2K2, and again, I managed to
make use of it as a prize for the winners of
the USAMTS. In the Introduction to C2K, that
was addressed to the winners of the USAMTS,
I gave a detailed description of KöMaL and its
history in the hope that someday someone would succeed better than I did in emulating KöMaL.
Both of the above volumes were edited by Vera Oláh, who was the editor of KöMaL at that time.
I served as one of the assistant editors to C2K. Some years later, under the editorship of Gyula
Nagy, several more issues of KöMaL appeared in English. Along with an article that Gyula wrote
in the present publication7, they also provide a glimpse into this wonderful publication.

The year-round problem-solving competitions in KöMaL and Abacus

today

In addition to articles of interest to high school students and reports on various competitions,
KöMaL presently conducts ten different year-round problem-solving competitions at different
grade- and difficulty-levels. They are as follows:

• At the lowest level there are 35 problems in the year marked by K; only students in Grades
less than 10 are allowed to submit solutions to them. The first 3 problems are the same as
the last 3 in Abacus.

• At the next level, there are 7 problems marked by C in each issue; of them the first 5 are
for students in Grades 10 and less, while the last 5 are for students in Grades 11 and 12.
Of the first 5, two are the same as the last two K-problems Here the students are separated
by grade level into the following three groups: students in Grades less than 9, students in
Grades 9 and 10 and students in Grades 11 and 12. This level has a total of 45 problems
during the year for each of the three grade levels.

• At the next level there are 8 problems marked by B in each issue, but the students are
restricted to submitting solutions to only 6 of them. This time the choice is theirs. They
are separated by grade level into the following five groups: students in Grades less than 9,
students in Grade 9, students in Grade 10, students in Grade 11 and students in Grade 12.
They all have 54 problems for the year for each of the five grade levels.

• And finally, there are 2 or 3 problems marked by A in each issue of KöMaL; they are for
students preparing for international competitions and/or careers in mathematical research,
regardless of their grades.

7Mathematics Competitions, Vol. 29, No. 2 (1996), pp.26-41
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In its turn, Abacus features 45 problems per year for the students in Grades 3 to 6 and 54 for
those in Grades 7 and 8. Since the point gathering competition is broken down by grades, there
are separate competitions for Grades 3 or less, Grades 4, 5, 6, 7 and 8 – six competitions per year.
Accordingly, in 7 of its 9 issues

• For students in Grades 3 & 4, there are 7 problems; of them the first 5 are for students in
Grades 3 and less, while the last 5 are for students in Grade 4.

• For students in Grades 5 & 6, there are 7 problems; of them the first 5 are for students in
Grade 5, while the last 5 are for students in Grade 6.

• For students in Grades 7 & 8, there are 8 problems; of them the first 6 are for students in
Grade 7, while the last 6 are for students in Grade 8.

In addition to these, following the example of KöMaL, there is a physics section in Abacus too,
with 5 problems per issue. There are also 2 harder mathematics problems marked MP, 3 logic
problems, 4 problems in chess, and 1 each in sudokus and nonograms. Furthermore, there are 3
problems in German and 2 in English in order for the students to hone their language skills by
submitting solutions in the appropriate languages. In all of these, the students compete year-round
for points. And whenever there is a gap, the journal is filled with a mathematical curiosity, a
puzzle, a joke or a historical fact.

Naturally, KöMaL’s physics problems are much more advanced and include experimental ones
(marked by M), easier ones for the lower grades (G) and harder ones (P) for the upper grades, and
year-round competitions in their solutions. In informatics, similarly, there are programing problem
that are easier (I), harder (I/S) and hard (S) and competitions in solving them. Moreover, KöMaL
has mathematical articles on topics of interest to high school students, reports on competitions
as well as on other events, like the recognitions given to outstanding teachers of mathematics
and physics. More specifically, Abacus reports on the results of the nationwide problem-solving
competition of mathematics teachers at the elementary and middle school level, while KöMaL
reports on the Distinguished Teaching Awards named after László Rátz (Rátz Tanár Úr Életműdı́j)
each year.

Synopsis and Recommendations

While I hugely admired the incredible riches of KöMaL, I had to settle for just one set of 5
problems per round in both of my attempts to emulate their year-round mathematical competi-
tions. Neither did I have the physical manpower to do more, nor did I have a reservoir of ingenious
problems created by a standing committee of 15 superb ‘problemists’ utilized by KöMaL. Occa-
sional ‘Calls for Problems’ were a poor substitute for that.

While the problems featured in my programs were much easier than those in a national Olympiad,
I followed the style of the Olympiads and that of the Wisconsin Talent Search, where similarly,
all of the contestants are offered the same problems regardless of grade and maturity levels. With
5 problems per round, one can afford to have one or even two relatively easy ones, suitable for
beginners and younger participants. One of the problems can also be harder to make sure that even
the best and most advanced participants are challenged. It is also possible to make sure that at least
one of the problems is geometrical, and that at least in every other round, the geometric problem is
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3-dimensional. Five problems also allow for a healthy mix of algebraic, number theoretic, logical,
trigonometric and combinatorial problems – all at the pre-calculus level.

As to the number of rounds per year, I recommend 4 at the outset, to be extended to 5 or 6, but not
to be reduced to 3 or less. In Year 1 (1978-1979) of the Competition Corner, the MS appeared 8
times, and hence, I had to cope with 8 rounds. It was a lot, but doable. In Years 2 & 3 (1979-1980
& 1980-1981), it appeared only 6 times, and hence, the pace was more modest. Nevertheless, not
wanting to exhaust my colleagues and since Consortium appeared 4 times, I reduced the USAMTS
to 4 rounds, which we managed with relative ease.

Ideally, the grading should be done by university students, who took part and did well in the
program while in high school. That’s how it is done in Hungary when it comes to the KöMaL
submissions, but at the outset, there are no ‘graduates’ of the program. Hence, at the outset one
must rely on faculty help, as I did. Fortunately, thanks to Dr. Gene Berg and his successors, I
could also rely on the mathematicians at the National Security Agency (NSA), when the number
of submissions got huge.

Back in 1978-1981, e-mailing was not yet available, and even in 1989-1998 only a few high school
students were accessible via e-mail. Nowadays, however, it should be possible to keep up with
the former participants of programs via e-mail, and in more developed countries one should be
able to organize grading via electronic communication with carefully selected former participants.
Thereby, after the initial 4-5 years of working with the program, it should be possible to turn over
– with proper supervision – the grading of the submissions to the earlier winners of the program.

The advantages of year-round competing

Based on the experiences and reflections of the former participants and on my personal views
developed during my days as a student in Hungary, I summarize below some of the benefits of
year-round competing

• Mathematically bright students need appropriate challenges regularly, rather than occasion-
ally.

• Problem-solving should be made into an intellectual habit, rather than a once-a-year experience.

• Clever students are often bored in the classroom; challenging them with interesting mathe-
matical problems gives an outlet for their creativity.

• Such programs can help the students improve their writing skills and presentation styles via
developing complete, well-written solutions.

• Having a month to develop one’s solutions is much more realistic then doing so in a timed
situation.

• Meeting stringent deadlines is best-learned and mastered at an early age.

• The solution of an interesting problem is a wonderful event, a most satisfactory accomplishment
in itself. Possibly seeing one’s work in print, makes it even more special.
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• Voluntarily observing an honor system in developing their own solutions will serve them
well.

• Seeing the often more clever or elegant solutions of others develops an appreciation of
each other, a better sense of one’s own capabilities, and at times even some much-needed
modesty.

• The anticipation of seeing the evaluation of one’s submissions and the joy of receiving the
next set of problems is also a worthwhile experience. Many parents recalled the positive
reactions of their kids upon receiving all of my mailings to them. Seemingly, they disappeared
with my letters and were not seen for the rest of the day and beyond.

• The students developed a sense of ownership in the program by seeing their names among
the ‘Commended Solvers’ and/or having a solution attributed to them. They were rightly
proud of their accomplishments and wanting more of the same, they worked harder.

• Creative mathematical problem solving is an excellent preparation for nearly every profession,
including law, medicine, business, engineering, economics, and the other sciences.

• Mathematics is unique among the sciences in that one can state difficult problems simply
and solve them without extensive technical background by applying clever ideas time and
again in an unexpected manner.

• Most of the Hungarian mathematicians, physicists, engineers and scientists, in general,
credit KöMaL for the basic training they received while in high school.

In fact, many of the 43 of us featured in a neat little book edited by Sándor Róka
credited KöMaL in answer to the question:
Why did I become a mathematician?
(That is the English translation of the title of the book)

Concluding Remarks

Clearly, with the 16 different year-round competitions conducted by KöMaL and Abacus, Hungary
has reached the Nirvana of mathematical rivalry of all students, regardless of grade-level and prior
experiences. But one must remember that it took them more than a century to reach their present
status, and that more than 4 generations have grown up on KöMaL. Thus, it is likely that the father
or mother, or one of the grandfathers, grandmothers, aunts, or uncles of the student working on a
KöMaL or Abacus problem was also a KöMaL - enthusiast a generation or two earlier. Thereby
in Hungary such an involvement often is already a family-trait.

Toward that lofty goal, I recommend humble beginning with four rounds of 5 carefully chosen
problems. Then, if and when a stronger support system is established, one might expand the
offering to 5 or 6 rounds of 7 problems, with the first 5 for younger participants and the last 5 for
students in the upper grades. As a next step, one might designate one of the problems appropriate
for extensions and/or generalizations and give an extra point for such accomplishments. I found
that many students love such opportunities and for most of them it is a novel experience.
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I also recommend a ‘personal touch’ via the evaluation
of the students’ submissions, making them recognize
that the grader is a fellow enthusiast in problem-solving.
A few words of encouragement can go a long way!
A typical Evaluation Form is shown on the right, where
Problem 476 allowed for an extra point for meaningful
generalizations. Time and again I used the space to
answer their questions, and at times I even entered into
regular correspondence with some of them. They told
me about their readings, about their accomplishments
on other competitions, and they shared with me even
some confidences.
I also recommend a pictorial tribute to the best of them
at the end of the school year, as well as Certificates
of Participation to the regular participants even if their
results are modest.
Finally, I strongly believe in appropriate prizes to the winners, preferably, books of appropriate
content.

I strongly believe that following Hungary’s example in year-round competing in creative mathema-
tical prooblem solving is the best approach toward developing a culture of mathematical excellence.
The capital of most countries can serve as a mathemacical center, and at the outset it is perfecly
suitable to use snail-mail for conducting such a program. A website should also be utilized and
electronic submissions and the use of LaTeX should be encouraged from the outset.

Add-On

I was ready to submit this article when my friend, Tünde Kántor neè Varga shared with me Vojtech
Bálint’s excellent article on “Hungarian mathematics development stimuli”8, which gives a much-
deeper historical background to the birth of KöMaL than the one given in the present article.
Professor Bálint also gives lists of the most successful solvers of the KöMaL problem. He was the
leader of the Slovakian team to the IMOs 11 times between 1996 and 2013.

Dr. George Berzsenyi
1818 E. Shorewood Blvd, Unit 310
Shorewood, WI 53211-2539 U.S.A.
gberzsenyi@gmail.com

8Antiquitates Mathematicae,Vol. 14(1) 2020, p. 1-15
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Cutting a Polygon: from Mathematics Competition
Problems to Mathematical Discovery9

Kiril Bankov

Kiril Bankov prepares future mathematics teachers as a professor
of mathematics education at the University of Sofia. He graduated
and received his PhD in mathematics at the same university. Prof.
Bankov is also a member of the Bulgarian Academy of Sciences.
He has been working for several international projects in mathe-
matics education. Kiril Bankov has been involved in mathema-
tics competitions in Bulgaria for more than 20 years as an author
of contest problems and as a member of juries. He was the
Secretary of World Federation of National Mathematics Compe-
titions (WFNMC), then was elected as the Senior Vice President
and in July 2018 he became the President of WFNMC.

Abstract
Problems are the intellectual product of mathematics competitions. Many
of these problems lead to interesting generalizations. Sometimes the ge-
neralizations are beyond elementary mathematics and they are real cha-
llenges for professional mathematicians. Such generalizations are a basis
of some of the discoveries in mathematics. This paper presents the de-
velopment of ideas, inspired by problems from mathematics competi-
tions, as beautiful mathematical discoveries. The problems are about the
partitions of a polygon (mainly a rectangle) into different shapes – a topic
that is fruitful for both creation of problems for mathematics competitions
and for mathematical discoveries.

Introduction

Cutting a given polygon into a finite number of certain shapes is a topic that offers a variety of tasks
for mathematics competitions. For example, here is a beautiful problem from the Saint Petersburg
Mathematical Olympiad, 1968 (Fomin, 1994).

Problem 1. Prove that an equilateral triangle cannot be cut into a finite number of equilateral
triangles in such a way that any two triangles are not congruent.

Cutting a polygon into triangles is studied in a variety of papers, for example in Bankov (2011),
where a solution to the above problem is given. There are contest problems for cutting a polygon
into shapes that are not triangles. For example, the following problem from the 16th Mathemati-
cal Olympiad in Poland, 1964-65 (Straszewicz, S. 1972, Problem 79; see also Straszewicz, S. &

9This paper is based on the author’s keynote talk at TSG46 of ICME-14.
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Browkin, J., 1978, Problem 95).

Problem 2. Prove that each square can be cut into squares whose number is an arbitrarily natural
number greater than 5 but cannot be cut into 5 squares.

Solution. Notice that if a square is cut into k squares, it can also be cut into (k + 3) squares
by connecting the midpoints of the opposite sides of one square. Also, for every natural number
n, n > 1, a square can be cut into 2n squares as shown in Figure 1.

Figure 1: Partition of a square into 2n squares

With combinations of these partitions a square can be cut into squares whose number is an
arbitrarily natural number greater than 5. For the second part of the problem, assume that a
square with side a can be cut into 5 squares. Obviously, four of these squares should have a
common vertex with one of the vertices of the given square. Let the sides of these four squares be
a1, a2, a3, a4. There are two possible locations of the fifth square (denote its side by a5):

1. It is inside the given square. Then, assuming an appropriate numbering, from a = a1+a2 =
a2 + a3 = a3 + a4 = a4 + a1 it follows that a1 = a3 and a2 = a4. The area of the given
square can be expressed in two different ways: (a1 + a2)2 = 2a2

1 + 2a2
2 + a2

5. The last
equation is not possible.

2. It has a side lying on a side of the given square. Then, assuming an appropriate numbering,
a = a1 + a2 = a2 + a3 = a3 + a4 = a4 + a5 + a1. This is also not possible.

Problems 1 and 2 give rise to further discovery. For example:

Question 1. Is it true that if a square is cut into a finite number of squares, there are at least two
congruent squares?

The answer to Question 1 is negative. The earliest historical traces of this task go back to the years
1923-1924 (Mauldin, 2015). At about this time, Stanisław Ruziewicz, professor of mathematics
at the university of Lwów, proposed to his students to find out if a rectangle could be made up of
squares of different sizes. In 1925 Zbigniew Moroń, a junior assistant of Ruziewicz presented in a
publication (Moroń, 1925) two such partitions of a rectangle.
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The first partition of a square into squares of different sizes was described by Sprague (1939).
After then, some mathematicians worked on the problem to find the smallest number of squares
of different sizes in such a partition. Duijvestijn, A. (1962) proved that it is not possible to cut
a square into less than 21 squares of different sizes. Later, Duijvestijn, A. (1978) found such a
partition with 21 squares with the aid of a computer. This rose interest in the development of
computer algorithms for the partitioning of a square into squares of different sizes with additional
properties about the partition (Gambini, 1999).

A similar question arises from the obvious fact that a square can be cut into a finite number of
isosceles right angled triangles.

Question 2. Is it true that if a square is cut into a finite number of isosceles right angled triangles,
there are at least two congruent triangles?

The answer to Question 2 is negative. Sergey Dorichenko sent me this drawing (Figure 2) showing
a partition of a (7 by 7) square into 7 isosceles right angled triangles without a congruent pair of
triangles.

Figure 2: Partition of a square into isosceles right angled triangles without a congruent

pair of triangles

Possible and Impossible Partitions

Triangulation is a special case of cutting a polygon. It is a partition of a polygon into a finite
number of triangles such that: (1) none of the vertices of the triangles lies on a side of the polygon
(except the vertexes of the polygon); (2) any two triangles either do not have a common point, or
they have a common vertex, or they have a common side (Figure 3).

Main properties of the triangulations are discussed in different articles, for example in Bankov
(1991). The number t of the triangles in any triangulation is t = 2n + k − 2, where k is the
number of the vertices (the sides) of the polygon, and n is the number of all vertices of the
triangles in the partition that are in the interior of the polygon. This follows from the equation
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Figure 3: Triangulation of a polygon

180◦ = 360◦ + 180◦(k − 2).

The equation t = 2n + k − 2 shows that the parity of the number t of the triangles in any
triangulation equals to the parity of the number k of the sides of the polygon. Therefore, for the
special case of a square, we obtain the following result, a variation of which was given in the 32th
Bulgarian Mathematical Olympiad, 1983 (Kenderov, Tabov, 1990).

Statement 1. A square can be triangulated into any even number of triangles but cannot be
triangulated into an odd number of triangles.

There are situations dealing with the so-called semi-triangulation of a polygon. This is a partition
of a polygon into finite number of triangles that satisfies only property (2) of the triangulation, i.e.
it is allowed that some of the vertices of the triangles lie on the sides of the polygon. The number
t of the triangles in any semi-triangulation is t = 2n+m+k −2, where k and n are as above, and
m is the number of all vertices of the triangles on the sides of the polygon excluding its vertices.

In some cases the question is about cutting a polygon into special type of triangles.

Problem 3. Prove that there is a semi-triangulation of a square into 8 acute-angled triangles but
not into less than 8 acute-angled triangles.

Solution. Figure 4 presents a semi-triangulation of a square ABCD into 8 acute-angled triangles.
To do this, let E and F be the midpoints of AB and CD respectively. Draw five semi-circles with
diameters AB, BC, AD, CF , and DF inside the square. Choose points G and H in the region of
the square that is outside these semi-circles such that G and H be symmetrical about EF . Draw
the solid lines. Prove that the obtained triangles are acute-angled.
For the second part of the problem, assume that there is a semi-triangulation of a square into less
than 8 acute-angled triangles. Each interior vertex of the semi-triangulation must be a common
point for at least 5 segments. Each vertex that lies on a side of a square must be a common point
for at least 2 segments that are inside the square. From t = 2n + m + 2 and t ≤ 7 it follows
that 2n + m ≤ 5. The case n = 1 is not possible. The other cases: {n = 2.m = 0} and
{n = 2, m = 1} are also impossible.
Here is another example. It is obvious that a square can be cut into a finite number of right angled
triangles. However, if we make some restrictions on the shape of the right angled triangles it may
happen that such a partition cannot be done.
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Figure 4: Semi-triangulation of a square into 8 acute-angled triangles

Problem 4. Prove that there is no semi-triangulation of a square into a finite number of right-
angled triangles each having an angle of 30◦.

Solution. Assume that there is such a semi-triangulation of a square. Let the length of the side
of the square be 1. Denote by a the shortest side of all triangles in the semi-triangulation. Then
the length of the shortest side of any of the triangles can be expressed as 2m

√
3na where m and

n are whole numbers. The area of such a triangle is 2m−13n
√

3a2. The sum of the area of all
triangles of the semi-triangulation equals the area of the square. This equation can be written as
M

√
3a2 = 1, where M is a natural number. On the other hand, one of the sides of the square

equals the sum of the lengths of the sides of the triangles of the semi-triangulation. This equation
is of the form (N + P

√
3)a = 1 where N and P are natural numbers. Then, the area of the square

is (N2 + 3P 2 + 2NP
√

3)a2 = 1. Therefore, we obtain M
√

3 = N2 + 3P 2 + 2NP
√

3 which is
impossible.

The condition that the partition in Problem 4 is a semi-triangulation is not important. The Statement in
Problem 4 can be generalized in the following way.

Statement 2. A square cannot be cut into a finite number of right-angled triangles each having an
angle of 30◦.

There is not an elementary proof of Statement 2. It is proven by Laczkovich (1990) using such
tools as fields, vector spaces, isomorphism between fields, and the complex roots of the unity.
Actually, Laczkovich proved a more general statement.

Statement 3. A square cannot be cut into a finite number of right-angled triangles all of whose
angles, when measured in degrees, are even integers.

Figure 5 shows that a 1 × 4 rectangle can be cut into three right-angled triangles each having an
angle of 15◦.

It follows that a square can be cut into 12 right-angled triangles each having an angle of 15◦.
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Figure 5: Partition of a 1 × 4 rectangle into three right-angled triangles with an angle of

15◦ each

Partition into Triangles of Equal Area

The source of this section is not a problem from competitions but from an examination. However,
the story is so interesting and instructive that it deserves to be told.
It is easy to see that a square can be cut into any even number of triangles of equal area. Intuitively,
one may expect that this is also true for any odd number of triangles. Perhaps, this is the reason
that in 1965 Fred Richman from the University of New Mexico intended to pose the problem for
cutting a square into any odd number of triangles of equal area on an examination in a master’s
program. He tried to solve it prior the exam, but he did not succeed and the problem was not posed
on the exam. The continuation of the story shows that this is a good example when intuition is
lying. Cutting a square into an odd number of triangles of equal area was posed as a problem in
the American Mathematical Monthly (Richman, F. & Thomas. J., 1967) and nobody solved it. In
1968 John Thomas published a paper (Thomas, J., 1968) where he proved that it is not possible to
cut a square into an odd number of triangles of equal area for a special case of the position of the
vertices of the triangles. This wonderful proof combines combinatorial and analytical methods. It
is understandable for more able students in the last grades of school or in the beginning courses of
the university. Here is a brief overview of Thomas’ evidence. He is looking for an answer to the
following

Question 3. Can a square be cut into an odd number of triangles of equal area?

Denote by R(a, b) the rectangle with vertices (0; 0), (a; 0), (0; b), and (a; b) in a Cartesian coordinate
system Oxy. The transformation T : {x′ = λx, y′ = µy} maps R(a, b) onto R(λa, µb) and
multiplies the area by the constant factor λµ. Therefore, Question 3 is equivalent to

Question 4. Can a rectangle be cut into an odd number of triangles of equal area?

Note that a triangle of integer area s can be cut into s triangles of unit area. Let N = mn where
m and n are odd integers. If Question 4 has a positive answer for N triangles, then R(m, n) can
be cut into triangles of unit area. Therefore, Question 4 reduces to

Question 5. If m and n are odd integers, can R(m, n) be cut into finite number of triangles of
integer area?

Thomas made two restrictions: (1) he considers semi-triangulations of the rectangle; (2) the
vertices of the semi-triangulations can only be the so-called lattice-points, i.e. points in the plane
whose coordinates are both integers.
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There are four types of lattice-points depending on the parity of their coordinates, namely: A =
(even, even), B = (even, odd), C = (odd, even), and D = (odd, odd). For each segment having
vertices at lattice points v1 = (x1, y1) and v2 = (x2, y2) consider the determinant ∆(v1, v2) =∣∣∣∣∣x1 y1

x2 y2

∣∣∣∣∣. A segment is called even or odd depending on whether ∆(v1, v2) is even or odd,

respectively. The area of a triangle whose vertices are lattice-points v1, v2 and v3 is equal to
1
2(∆(v1, v2) + ∆(v2, v3) + ∆(v3, v1)). Such a triangle has an integer area if and only if it has
exactly null or two odd sides. It is easy to check that out of ten types of segments only three are
odd and they are {B, C}, {C, D} and {B, D}.

It follows that a lattice triangle has an integer area if and only if its vertices are not of three different
types. Let m and n be odd integers. Assume that there is a semi-triangulation of R(m, n) into
triangles of integer area. Since the vertices of R(m, n) are all of different types, its sides are
of types {A, B}, {C, D} {A, C} and {B, D}. The sides of type {A, B} of the triangles in the
semi-triangulation may appear either inside R(m, n) or on its {A, B} side. The number of these
that are on the boundary of R(m, n) is odd. These that are inside R(m, n) are common for two
triangles of the semi-triangulation. Therefore, the total number of {A, B} sides in all triangles is
odd. The triangles whose vertices are not of three different types contribute an even number of
sides {A, B}. Hence, there must be a triangle whose vertices are of three different types. This
triangle does not have an integer area. Therefore there is no lattice-point semi-triangulation of
R(m, n) into triangles of integer area for odd integers m and n.

Thomas also considered partitions that are not semi-triangulations. His final result is the following

Statement 4. It is not possible to cut the unit square into an odd number of triangles having the
same area, for which all vertices have rational numbers with odd denominators as coordinates.

The story ended when finally, Paul Monsky (1970) proved the following statement without any
restrictions of the vertices of the triangles.

Statement 5. A square cannot be cut into an odd number of triangles having the same area.

An elementary proof of Statement 5 is not known. Monsky’s proof is beautiful but it uses topological
tools (Sperner’s lemma) and 2-adic valuations. In some sense, Monsky extended Thomas’ idea
presented above. He begins with the so-called “2-adic valuation function” ϕ : Q → Q defined for
any rational number q ̸= 0 , q = 2ab

c where b and c are odd integers, as ϕ(q) = a. Then he uses
the non-trivial assertion that this function can be extended to a function Φ : R → R that satisfies
some useful properties. Using this last function it is possible to color the points of the square in
three colors. Combinatorial arguments show that there is a triangle in the partition whose vertices
are in three different colors. This leads to the conclusion that the number of the triangles is even.

Tiling

In some situations it is more convenient to express the tasks as tiling rather than cutting.
Mathematically, this is all the same. Many contest problems use the idea of tiling. One of the most
popular problem is to show that an chessboard with two diagonally opposite corners removed

66



Mathematics Competitions Vol 35 No 1 2022

cannot be tiled with dominos. In this and many other cases coloring is a useful method.

Let m and n be natural numbers. Coloring is not needed to see that an m × n rectangle can be
tiled with dominos if and only if either m or n is even. The m × n rectangle can by tiled with
3 × 1 tiles if and only if either m or n is divisible by 3, because the area mn of the rectangle must
be divisible by 3. The same argument can be used for tiling an m × n rectangle with k × 1 tiles
for any prime number k. To investigate which m × n rectangle can be tiled with k × 1 tiles for any
natural number k, coloring in k colors may be used. A more powerful method, however, is to use
the complex roots of unity. Assume that a rectangle m × n can be tiled with k × 1 tiles. “Color”
the cell in row i and column j in the rectangle with “color” zi+j−2, where 1, z, z2, . . . , zk−1 are
the kth complex roots of the unity (Figure 6).

Figure 6: Using kth complex roots of the unity as k colors

Each k ×1 tile covers all “colors” exactly once. The sum of the covered “colors” by each k ×1 tile
is 1 + z + z2 + · · · + zk−1 = 0. Therefore, the sum of all entries in the cells of the tiled rectangle
must also be 0, that is 0 =

∑m
i

∑n
j zi+j−2 = (

∑m
i zi−1)(

∑n
j zj−1). It follows that one of the

sums in the brackets must be 0. But
∑m

i zi−1 = 0 if and only if zm = 1, which means that m is
divisible by k. If the other sum is 0, it means that n is divisible by k. We have proved:

Statement 6. An m×n rectangle can be tiled with k×1 tiles if and only if k divides either m or n.

Using similar arguments one may prove

Statement 7. An m × n rectangle can be tiled with k × r tiles if and only if k divides either m or
n and r divides either m or n.

We will consider now a generalization of the last statement. In some sense, the generalization is a
transition from a discrete to a continuous case. Let a and b be positive real numbers.

Statement 8. If an a × b rectangle can be tiled by rectangles each of which has at least one side
of integer length, then either a or b is an integer.

It seems that it was popular at the second half of the last century to find different proofs of
Statement 8. For example, Wagon (1987) describes 14 proofs. Here is one of them that shows
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the analogy between the discrete and continuous case.
Assume that the coordinates of the vertices of the tiled rectangle are (0; 0), (a; 0), (0; b), and (a; b)
in a Cartesian coordinate system Oxy. In the reasoning before Statement 6 (discrete case) we
assigned each square (i; j) the value zi+j−2. We will now assign each point (x; y) of the square
(continuous case) the value f(x, y) = sin 2πx sin 2πy. The “sum” of the values of all points
that each tile T covers is

∫∫
T f(x, y) = 0 because each tile has a side of integer length and

the integral of sin 2πx over any interval with integer length is zero. Therefore, the integral of
f(x, y) over the whole tiled rectangle must also be zero, that is 0 =

∫ a
0
∫ b

0 sin 2πx sin 2πydxdy =
1

(2π)2 (1 − cos2πa)(1 − cos2πa). Hence, either cos2πa = 1 or cos2πb = 1, which means that
either a or b is an integer. A beautiful generalization, isn’t it?

In line with what has been said here, it is worth noting a result of David Hilbert’s student Max
Dehn. In the beginning of the 20th century Dehn contributed to the solution to the third Hilbert’s
problem. Soon after this he published a paper (Dehn, 1903) where he proved the following

Statement 9. A rectangle can be tiled with finitely many squares if and only if the ratio of its sides
is a rational number.

The statement is not surprising itself but the proof is quite difficult. Dehn’s original proof is very
complicated. Improvements of the proof have been made over the years. However, until now no
relatively easy to understand proof has been found.

The proofs of many of the generalizations described in this paper are not on elementary mathe-
matics level. Even if the statements sound geometric, most of the proofs use advanced algebra
tools.
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Introduction

The following problem appears in 1993 in the Sixth Irish Mathematical Olympiad.

Problem 1.

Prove that for all integers n ≥ 1 and all real numbers x such that 0 < x < π,

sin x + sin 3x

3 + sin 5x

5 + · · · + sin(2n − 1)x
2n − 1 > 0.

This trigonometric inequality has a simple uniform structure. It has a lot of depth, and its proof is
anything but simple. In this paper we present our proofs, consider some variations, explore what
lie behind it and give some generalizations. There are also some exercises with solutions at the
end.
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Proofs

We denote the left side of the above inequality by f(x). We present three proofs.

First Proof: We use product-to-sum trigonometric formula,

2 sin x sin (2k − 1) x = cos (2k − 2) x − cos 2kx

Then

2f (x) sin x

= 1 − cos 2x + cos 2x − cos 4x

3 + cos 4x − cos 6x

5 + · · · + cos (2n − 2) x − cos 2nx

2n − 1

= 1 −
(

1 − 1
3

)
cos 2x −

(1
3 − 1

5

)
cos 4x − · · · −

( 1
2n − 3 − 1

2n − 1

)
cos (2n − 2) x − cos 2nx

2n − 1

⩾ 1 −
(

1 − 1
3

)
−
(1

3 − 1
5

)
−
(1

5 − 1
7

)
− · · · −

( 1
2n − 3 − 1

2n − 1

)
− 1

2n − 1

The above equality holds if and only if cos 2kx = 1 (k = 1, 2, · · · , n). Since 0 < x < π, we have
cos 2x ̸= 1. So f (x) sin x > 0, and f (x) > 0. Hence we have proved the original inequality.
Remark: The key step is to use trigonometric identities to change the product 2 sin x sin(2k−1)x
into the difference cos(2k − 2)x − cos 2kx. Although we do not achieve cancellations directly,
this is possible after recombining the resulting terms, yielding the result 2f(x) sin x > 0.

Second Proof: Let ak = 1
2k−1 , bk = sin (2k − 1) x, then f (x) =

n∑
k=1

akbk. Note that by product-

to-sum trigonometric formula we have

n∑
k=1

bk =
n∑

k=1
sin (2k − 1) x

=

n∑
k=1

2 sin x sin (2k − 1) x

2 sin x

=

n∑
k=1

[cos (2k − 2) x − cos 2kx]

2 sin x

= 1 − cos 2nx

2 sin x

= 2sin2nx

2 sin x

Hence by Abel Transform

f (x) =
n∑

k=1
akbk = an

n∑
k=1

bk + (an−1 − an)
n−1∑
k=1

bk + · · · + (a1 − a2) b1

Since 0 < x < π, and {ak} is strictly decreasing, we have at−1−at > 0, and
t∑

k=1
bt = 2sin2tx

2 sin x > 0,

where t = 2, 3, · · · , n, and an, b1 > 0. Thus f (x) > 0. We have proved the original inequality.

71



Mathematics Competitions Vol 35 No 1 2022

Remark: We use the Abel Transforms to separate, in f(x) =
n∑

k=1
akbk, the summable trigonometric

series bk = sin(2k − 1) from the strictly decreasing sequence ak = 1
2k−1 . This allows us to deal

with them separately. Particularly useful is the fact that
t∑

k=1
bk = 2 sin2 tx

2 sin x
> 0 for ≤ t ≤ n.

Hence after the Abel Transform, every term in the sum of f(x) is positive, leading to f(x) > 0.

Third Proof:
f ′ (x) = cos x + cos 3x + cos 5x + · · · + cos (2n − 1) x

= 1
2 sin x

[2 sin x cos x + 2 sin x cos 3x + 2 sin x cos 5x + · · · + 2 sin x cos (2n − 1) x]

= 1
2 sin x

[sin 2x + sin 4x − sin 2x + sin 6x − sin 8x + · · · + sin 2nx − sin (2n − 2)]

= sin 2nx

2 sin x
,

Let f ′ (x) = 0. Since 0 < x < π, we have xk = kπ
2n , where k = 1, 2, · · · , 2n − 1. In each interval

(0, x1) , (x2, x3) , · · · , (x2n−2, x2n−1) the function f is strictly increasing, as f ′ (x) > 0 there;
in each interval x ∈ (x1, x2) , (x3, x4) , · · · , (x2n−1, π) the function f is strictly decreasing, as
f ′ (x) < 0 there.

Note that f (0) = f (π) = 0. If we want to prove that f > 0, we only need to prove that all
minima of f are positive, i.e. f (x2k) = f

(
kπ
n

)
> 0 (k = 1, 2, · · · , n − 1). It is easily to prove

that f (x) = f (π − x), i.e. the graph of f is symmetry with respect to the line x = π
2 . So we only

need to prove that f
(

kπ
n

)
> 0

(
k = 1, 2, · · · ,

[
n
2
])

.

Now we prove a stronger statement: the sequence f
(

kπ
n

) (
k = 0, 1, 2, · · · ,

[
n
2
])

is strictly increasing.

Since f ′ (x) = sin 2nx
2 sin x , we have f (x) =

∫ x
0

sin 2nt
2 sin t dt. Then

f

(
kπ

n

)
− f

((k − 1) π

n

)
=
∫ kπ

n

(k−1)π
n

sin 2nt

2 sin t
dt

Using integration by substitution we have∫ kπ
n

(k−1)π
n

sin 2nt

2 sin t
dt =

∫ 2kπ

2(k−1)π

sin t

2 sin t
2n

d
t

2n
= 1

4n

∫ 2kπ

2(k−1)π

sin t

sin t
2n

dt

Since ∫ 2kπ

2(k−1)π

sin t

sin t
2n

dt =
∫ (2k−1)π

2(k−1)π

sin t

sin t
2n

dt +
∫ 2kπ

(2k−1)π

sin t

sin t
2n

dt

=
∫ (2k−1)π

2(k−1)π

sin t

sin t
2n

dt +
∫ (2k−1)π

2(k−1)π

sin (t + π)
sin t+π

2n

d (t + π)

=
∫ (2k−1)π

2(k−1)π

sin t

sin t
2n

dt −
∫ (2k−1)π

2(k−1)π

sin t

sin t+π
2n

dt

=
∫ (2k−1)π

2(k−1)π
sin t

(
1

sin t
2n

− 1
sin t+π

2n

)
dt

When 1 ⩽ k ⩽
[

n
2
]
, t ∈ [2 (k − 1) π, (2k − 1) π], t

2n , t+π
2n ∈

[
(k−1)π

n , kπ
n

]
⊆
[
0, π

2
]
, we have

sin t

(
1

sin t
2n

− 1
sin t+π

2n

)
⩾ 0,
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Thus ∫ (2k−1)π

2(k−1)π
sin t

(
1

sin t
2n

− 1
sin t+π

2n

)
dt > 0,

so

f

(
kπ

n

)
− f

((k − 1) π

n

)
> 0

(
k = 1, 2, · · · ,

[
n

2

])
,

Therefore f
(

kπ
n

)
> f

(
(k−1)π

n

)
> · · · > f (0) = 0. We have proved the original inequality.

Remark: From a functional point of view, in order to show that we always have f(x) > 0, it
is only necessary to show that the minimum value of f is positive. It is natural to investigate
the monotonicity of the function and then determine its extremal values. However, f has a very
large number of critical points in the interval (0, π), and the comparison of their values is difficult.
Using integration to determine the monotonicity of the function seems an overkill. Perhaps the
reader may have noticed that the condition f > 0 depends also on n, and perhaps induction may
have a role to play. However, our effort in this direction is unsuccessful.

Variations

The great American-Hungarian mathematician and mathematics educator György Pólya once said,
“When you find a mushroom, keep your eyes open because they tend to grow in bunches.” The
seeking of related problems is an interesting and fruitful exercise in mathematics.

We notice that in Problem 1 we have omitted all the fractions with even denominators. What
would happen if we bring them into the picture?

Problem 2.
Prove that for all integers n ≥ 1 and all real numbers x such that 0 < x < π,

sin x + sin 2x

2 + sin 3x

3 + · · · + sin nx

n
> 0.

Proof:

Let fn (x) = sin x + sin 2x
2 + sin 3x

3 + · · · + sin nx
n , 0 ⩽ x ⩽ π.

(1) When n = 1, f1 (x) = sin x > 0 always holds for 0 < x < π;

(2)Assume it holds when n = k, that is, assume that fk (x) = sin x+ sin 2x
2 + sin 3x

3 +· · ·+ sin kx
k > 0

always holds for 0 < x < π. We want to show that it still holds when n = k + 1, Now

fk+1
′ (x) =

k+1∑
t=1

cos tx =
2 sin x

2
k+1∑
t=1

cos tx

2 sin x
2

=

k+1∑
t=1

[
sin
(
t + 1

2

)
x − sin

(
t − 1

2

)
x
]

2 sin x
2

=
sin
(
k + 3

2

)
x − sin x

2

2 sin x
2

=
sin (k+1)x

2 cos (k+2)x
2

sin x
2
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Let fk+1
′ (x) = 0. Since 0 < x < π, we have xm

′ = 2mπ
k+1 , xm

′′ = (2m+1)π
k+2 , where 2m =

1, 2, · · · , k.

Note that fn (0) = fn (π) = 0, and fk+1 (x) is continuous on (0, π), so we only need to prove
that fk+1 (x) is positive at critical points xm

′, xm
′′. By inductive hypothesis

fk+1
(
xm

′) = fk

(
xm

′)+ sin (k + 1) xm
′

k + 1 = fk

(
xm

′) > 0

fk+1
(
xm

′′
)

= fk

(
xm

′′
)

+ sin (k + 1) xm
′′

k + 1 = fk

(
xm

′′
)

+
sin (k+1)(2m+1)π

k+2
k + 1

= fk

(
xm

′′
)

+
sin (2m+1)π

k+2
k + 1

= fk

(
xm

′′
)

+ sin xm
′′

k + 1 > 0

Thus fk+1 (x) > 0 always holds for 0 < x < π.

Combining (1) and (2) and using the principle of mathematical induction, we have solved problem
2.

Remark: From the literature, we discover that this is the well-known Fejer-Jackson Inequality,
first proposed by Fejer in 1910 and proved by Jackson in 1911. Since then, many proofs have been
presented, but most of them require advanced knowledge and techniques. Our inductive argument
makes use of the derivative to determine the critical points of fn(x), avoiding the concepts of
monotonicity and extremal value determination. The trick is going from the case n = k to the
case n = k + 1 is to use the fact that the added term, sin(k+1)x′

m
k+1 or sin)k+1)x′′

m
k+1 , is positive. It

should be mentioned that similar approaches are used in the three proofs of Problem 1 have not
led to success. Interested readers may wish to pursue this.

What would happen if we replace x by π − x in Problem 2?

Problem 3.

Prove that for all integers n ≥ 1 and all real numbers x such that 0 < x < π,

sin x − sin 3x

3 + sin 5x

5 + · · · + (−1)n−1 sin(2n − 1)x
2n − 1 > 0.

Note that we can obtain a solution to Problem 3 from the solution to Problem 2 via a simple
transformation, without having to go through an inductive argument again. This idea has many
applications.

Explorations

Pólya had said that after working on a mathematical problem, we should try to think of related
problems. It is often fruitful to check on the history of the problem, to learn from the experience
of people who had worked on it before.

We know from the work of Fourier that almost all periodic functions, including some very complicated
and esoteric ones, can be expressed as limiting cases of summations of the sine and cosine function,
or Fourier series. Problems 1, 2 and 3 all involve the sine function with period 2π. When we let n
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approach infinity, the limiting cases should be the Fourier series of certain functions with period
2π.

To be specific, according to Fourier expansion, the function g (x) =
{

−π
4 , −π < x < 0,
π
4 , 0 < x < π.

with

period T = 2π can be expanded to

a0
2 +

∞∑
n=1

(an cos nx + bn sin nx)

where
a0 = 1

π

∫ π

−π
g (x) dx = 0, an = 1

π

∫ π

−π
g (x) cosnxdx = 0

bn = 1
π

∫ π

−π
g (x) sinnxdx = 2

π

∫ π

0

π

4 sinnxdx = 1
2n

[1 − (−1)n] =
{

0, nis even,
1
n , nis odd.

So

g (x) = sin x + sin 3x

3 + · · · + sin (2n − 1) x

2n − 1 + · · · =
∞∑

k=1

sin (2k − 1) x

2k − 1

Hence, Problem 1 is to prove that f (x) =
n∑

k=1

sin(2k−1)x
2k−1 , which is the partial sum of g (x) , is

always positive on (0, π). As shown in next picture, we draw the graph of the function f (x) on
(0, π) in the same rectangular coordinate system when n = 1, 6, 11, 16. Obviously, when n is
increasing, the graph of f is getting closer to the graph of g on (0, π). Thus by Fourier’s theorem

we have g (x) =
∞∑

k=1

sin(2k−1)x
2k−1 > 0 on the interval (0, π).

Similarly, the function g (x) =
{

−π−x
2 , −π < x < 0,

π−x
2 , 0 < x < π.

with period T = 2π can be expanded to

g (x) = sin x + sin 2x

2 + sin 3x

3 + · · · + sin nx

n
+ · · · =

∞∑
k=1

sin kx

k

Problem 2 is to prove that f (x) =
n∑

k=1

sin kx
k , which is the partial sum of g (x), is always positive

on (0, π).
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The Fourier expansion of the function g (x) = x
2 , for −π < x < π is

g (x) = sin x − sin 2x

2 + sin 3x

3 − · · · + (−1)n+1 sin nx

n
+ · · · =

∞∑
k=1

(−1)k+1 sin kx

k
.

Problem 3 is to prove that f (x) =
n∑

k=1
(−1)k+1 sin kx

k , which is the partial sum of g (x), is always

positive on (0, π)

Generalizations

Pólya had also said that no problem can ever be said to be completely solved; there are always
issues worthy of more research. He regarded the considerations of general cases and special cases
as a great source which leads to further discovery.

Following his advice, we come up with the following.

Problem 4.

Prove that for all positive integers n, all real numbers x such that 0 < x < π, and real numbers
a1 ≥ a2 ≥ a3 ≥ · · · ≥ an > 0 we have

a1 sin x + a2 sin 3x + a3 sin 5x + · · · + an sin(2n − 1)x > 0.

Proof:

Let bk = sin (2k − 1) x, then f (x) =
n∑

k=1
akbk. Similarly to the second proof of Problem 1, we

have,
n∑

k=1
bk =

n∑
k=1

sin (2k − 1) x = 2sin2nx

2 sin x

By Abel Transform we have

n∑
k=1

akbk = an

n∑
k=1

bk + (an−1 − an)
n−1∑
k=1

bk + · · · + (a1 − a2) b1

Since 0 < x < π, and {ak} is weakly decreasing, we know that at−1 − at ⩾ 0, and
t∑

k=1
bt =

2sin2tx
2 sin x > 0, where t = 2, 3, · · · , n, and an, b1 > 0. Thus f (x) > 0 always holds. We have

proven the original inequality.

Note that Problem 1 is the special case of Problem 4 where ak = 1
2k−1 , k = 1, 2, · · · , n.

Problem 5.

Prove that for all positive integers n, all real numbers x such that 0 < x < π, and real numbers
a1 ≥ a2 ≥ a3 ≥ · · · ≥ an > 0,

a1 sin x + a2
sin 2x

2 + a3
sin 3x

3 + · · · + an
sin nx

n
> 0.

Proof:
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Note that
d

dt

sin at

a(sin t)a = −sin (a − 1) t

(sin t)a+1

Let a = 2k, t = x
2 , then

d

dx

sin kx

k
(
sin x

2
)2k

= −
sin (2k−1)x

2(
sin x

2
)2k−1

By integrating both sides of the equation on (x, π) we can get

sin kx

k
(
sin x

2
)2k

=
∫ π

x

sin (2k−1)x
2(

sin x
2
)2k−1 dx =

∫ π
2

x
2

2 sin (2k − 1) θ

(sin θ)2k−1 dθ

So
sin kx

k
= 2

∫ π
2

x
2

(
sin x

2

)2k sin (2k − 1) θ

(sin θ)2k−1 dθ = 2
∫ π

2

x
2

(sin x
2

sin θ

)2k sin (2k − 1) θ

sin θ
dθ

Then
n∑

k=1

ak sin kx

k
= 2

∫ π
2

x
2

n∑
k=1

ak

(sin x
2

sin θ

)2k sin (2k − 1) θ

sin θ
dθ

Let bk = ak

( sin x
2

sin θ

)2k 1
sin θ . Since a1 ⩾ a2 ⩾ · · · ⩾ an > 0 we have b1 ⩾ b2 ⩾ · · · ⩾ bn > 0.

Now by the result from Problem 4 we know that

n∑
k=1

ak

(sin x
2

sin θ

)2k sin (2k − 1) θ

sin θ
=

n∑
k=1

bk sin (2k − 1) θ > 0

Thus
n∑

k=1

ak sin kx

k
> 0

We have proven the original inequality.

Note that Problem 2 is the special case of Problem 5, where ak = 1, k = 1, 2, · · · , n.

Remark: In the past decades there were presented many elegant, rigorous, innovative, deep and
widely-spread problems springing up among the native and international competitions. These
problems are brilliant resources to improve people’s mathematics capability. During the solving,
practicing and researching progress of those problems, we are getting deeper into the insight of
the world. Therefore, we not only gain methods of studying knowledge but also happiness by
practicing mathematics, which is beneficial to our professional growth.

Exercises

Exercise 1. (1949 Kürschák Competition, Hungary)

Prove that for each real number x such that 0 < x < π, we have sin x + sin 2x

2 + sin 3x

3 > 0.

Exercise 2.

Prove that all any real number x, we havesin x + sin 2x + sin 3x < 5
2 .
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Exercise 3.

Prove that for all integers n and all real numbers x such that 0 < x < π
2

cos x − cos 3x

3 + cos 5x

5 + · · · + (−1)n−1 cos(2n − 1)x
2n − 1 > 0.

Exercise 4. (1967 Putnam Competition, USA)

Let f(x) = a1 sin x + a2 sin 2x + · · · + an sin nx, where n is a positive integer and a1, a2, . . . , an

are real numbers. If |f(x)| < | sin x| for any real number x, prove that |a1 +2a2 + · · ·+nan| ≤ 1.

Exercise 5.

Prove that for all positive integers n and all real numbers x

|sin x| + |sin 2x|
2 + |sin 3x|

3 + · · · + |sin nx|
n

⩾ |sin nx| .

Exercise 6.

Prove that for all integers n ≥ 1 and all real numbers x such that 0 < x < π,

sin x + sin 3x

3 + sin 5x

5 + · · · + sin(2n − 1)x
2n − 1 ≤ 2

√
π.

Solution to Exercise 1.

This is of course just a special case of Problem 2. We present a solution without reference to
Problem 2.

Proof: Let x ∈ (0, π). Then

sin x + 1
2 sin 2x + 1

3 sin 3x

= sin x + sin x cos x + 1
3
(
3 sin x − 4sin3x

)
= sin x

(
2 + cos x − 4

3sin2x

)
= sin x

3
(
4cos2x + 3 cos x + 2

)
= sin x

3
[
(1 + cos x)2 + (1 + cos x) + 3cos2x

]
> 0

Solution to Exercise 2.
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Proof: We have
sin x + sin 2x + sin 3x

⩽ |sin 2x + (sin x + sin 3x)|
= 2 |sin x cos x + sin 2x cos x|
⩽ 2 (|sin x cos x| + |sin 2x cos x|)

⩽ 2
√(

sin2x + cos2x
) (

cos2x + sin22x
)

= 2
√

cos2x + 4 (1 − cos2x) cos2x

= 2

√
−4
(

cos2x − 5
8

)2
+ 25

16

⩽ 2
√

25
16

= 5
2 .

Solution to Exercise 3.

Proof: In Problem 1, let t = π
2 − x ∈

(
−π

2 , π
2
)
, then

cos t − sin 3t

3 + sin 5t

5 + · · · + (−1)n−1 sin (2n − 1) t

2n − 1 > 0

Hence the inequality holds.

Solution to Exercise 4.

Proof: Let M = |a1|+|a2|+· · ·+|an|. For a positive integer k (1 ⩽ k ⩽ n), since lim
x→0

sin kx
sin x = k,

by definition of the limit of a function, for any ε > 0 there exists x such that sin x ̸= 0, and∣∣∣∣sin kx

sin x
− k

∣∣∣∣ <
ε

M
, k = 1, 2, · · · , n.

Now we have

1 ⩾
∣∣∣∣f (x)
sin x

∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ak sin kx

sin x

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

kak −
n∑

k=1

(sin kx

sin x
− k

)
ak

∣∣∣∣∣
⩾

∣∣∣∣∣
n∑

k=1
kak

∣∣∣∣∣−
n∑

k=1

∣∣∣∣(sin kx

sin x
− k

)∣∣∣∣ |ak| ⩾
∣∣∣∣∣

n∑
k=1

kak

∣∣∣∣∣− ε

Since ε > 0 is arbitrary, |a1 + 2a2 + · · · + nan| =
∣∣∣∣ n∑
k=1

kak

∣∣∣∣ ⩽ 1.

Solution to Exercise 5.

Proof: First, note that

sin |x + y| = |sin x cos y + cos x sin y| ⩽ |sin x cos y| + |cos x sin y| ⩽ |sin x| + |sin y| .

We proceed by induction on n.

(1) When n = 1, it is trivial;

(2) Assume it holds when n ⩽ k, i.e.

|sin x| ⩾ |sin x| ,
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|sin x| + |sin 2x|
2 ⩾ |sin 2x| ,

· · · · · · ,

|sin x| + |sin 2x|
2 + |sin 3x|

3 + · · · + |sin kx|
k

⩾ |sin kx| .

Adding these inequalities above we have

k |sin x| + (k − 1) |sin 2x|
2 + · · · + 1 · |sin kx|

k
⩾ |sin x| + |sin 2x| + · · · + |sin kx| .

If we add |sin x| + |sin 2x| + |sin 3x| + · · · + |sin kx| to both side of the inequality, then

(k + 1)
(

|sin x| + |sin 2x|
2 + |sin 3x|

3 + · · · + |sin kx|
k

)
⩾ (|sin x| + |sin kx|) + (|sin 2x| + |sin (k − 1) x|) + · · · + (|sin kx| + |sin x|)
⩾ k |sin (k + 1) x| .

Thus

|sin x| + |sin 2x|
2 + |sin 3x|

3 + · · · + |sin kx|
k

+ |sin (k + 1) x|
k + 1 ⩾ |sin (k + 1) x| .

Hence when n = k + 1, the original inequality holds.

Combining (1), (2) and the principle of mathematical induction we have proved that |sin x| +
|sin 2x|

2 + |sin 3x|
3 + · · · + |sin nx|

n ⩾ |sin nx|.

Solution to Exercise 6.

Proof: For any fixed x ∈ (0, π), let m =
[√

π
x

]
, then m ⩽

√
π

x < m + 1, and

n∑
k=1

sin kx

k
=

m∑
k=1

sin kx

k
+

n∑
k=m+1

sin kx

k

When m = 0, the first sum of right hand is 0; when m ⩾ n, the second sum of right hand is 0, and
in the first sum k is from 1 to n.

When 0 < x < π, we have sin kx < kx. Thus

m∑
k=1

sin kx

k
⩽

m∑
k=1

kx

k
= mx ⩽

√
π

Let Si =
i∑

k=m+1
sin kx, i = m + 1, m + 2, · · · , n. Then

Si · sin x

2 = 1
2

i∑
k=m+1

[
cos

(
k − 1

2

)
x − cos

(
k + 1

2

)
x

]

= 1
2

[
cos

(
m + 1

2

)
x − cos

(
i + 1

2

)
x

]
⩽ 1

thus Si ⩽ 1
sin x

2
for i = m + 1, m + 2, · · · , n.
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Let ak = sin kx, bk = 1
k , k = m + 1, m + 2, · · · , n. Then bm+1 ⩾ bm+2 ⩾ · · · ⩾ bn, so by Abel

inequality we know

n∑
k=m+1

sin kx

k
⩽

∣∣∣∣∣∣
n∑

k=m+1

sin kx

k

∣∣∣∣∣∣ ⩽ 1
sin x

2
· 1

m + 1 ,

Since 0 < x
2 < π

2 , by Jordan’s inequality we have sin x
2 > 2

π · x
2 = x

π , thus

1
sin x

2
· 1

m + 1 ⩽
1

x
π ·

√
π

x

=
√

π

Then
n∑

k=1

sin kx

k
=

m∑
k=1

sin kx

k
+

n∑
k=m+1

sin kx

k
⩽ 2

√
π
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Abstract
This paper briefly describes a heuristic investigation using dynamic
geometry of some concurrency, collinearity and other properties of a
particular hexagon that would be of interest to mathematics olympiad
enthusiasts. After managing to prove the initial result, further reflection
on the proof led to an immediate generalisation, illustrating the so-called
‘discovery’ function of proof.

Introduction

It is often said that theorems in mathematics are mostly discovered by means of intuition and/or
experimental methods, before they are verified by the production of proofs. However, there are
perhaps just as many examples in the history of mathematics where new results were discovered
or invented in a purely deductive manner.
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For example, it is completely unlikely that some results (like the non-Euclidean geometries) could
ever have been chanced upon merely by intuition and/or only using experimental and/or inductive
methods. Many similar historical examples can be given in regard to the development of abstract
algebra, set theory, calculus, etc. Generally, to the working mathematician, proof is therefore
not just a means of verifying an already-discovered result, but often also a means of exploring,
analyzing, discovering and inventing new results. Indeed, quite frequently explaining (proving)
why a result is true enables further generalisation (or specialisation). This valuable function of
proof has been called the discovery function of proof by De Villiers (1990, 1997). Apart from
presenting some new concurrency, collinearity and parallel results related to a special type of
hexagon that should be accessible and of interest to talented mathematics olympiad students at
college and high school level, this paper will also roughly describe the heuristic process by which
these results were arrived at.

Start of the Investigation

The first conjecture below was initially discovered and experimentally verified with a dynamic
geometry program. However, as shown further on, proving it allowed us to immediately generalise
it, and provides an instructive example of the discovery function of proof.

Conjecture 1. Given a hexagon ABCDEF with AB = BC, CD = DE, EF = FA, and
∠A = ∠C = ∠E = 120◦, then AD, BE, and CF are concurrent at P .

Proof. The result follows directly from the following useful theorem by Anghel (2016): Given a
hexagon ABCDEF , then the main diagonals AD, BE and CF are concurrent, if and only if
sin(∠BCE) · sin(∠DEA) · sin(∠FAC) · sin(∠DCE) · sin(∠FEA) · sin(∠BAC)
= sin(∠ACD) · sin(∠CEF ) · sin(∠EAB) · sin(∠BCA) · sin(∠DEC) · sin(∠FAE).
Since ∠FEA = ∠FAE,∠BAC = ∠BCA and ∠DCE = ∠DEC from the three formed
isosceles triangles, the above concurrency condition simplifies to showing that the fraction

sin(∠BCE) · sin(∠DEA) · sin(∠FAC)
sin(∠ACD) · sin(∠CEF ) · sin(∠EAB) = 1.

If the angles are now labelled as shown in Figure 1, with ∠CAE = a,∠ECA = c and ∠AEC =
e, and letting ∠A = ∠C = ∠E = 120◦, we obtain the following fraction by substitution into the
aforementioned condition:

sin(x + c) · sin(120◦ − x − c + e) · sin(120◦ − x − a + a)
sin(120◦ − x − c + c) · sin(120◦ − x − a + e) · sin(x + a) = sin(x + c) · sin(120◦ − x − c + e)

sin(120◦ − x − a + e) · sin(x + a) .

From the sum of the angles at say vertex E, we obtain the following identity 2x+a+c−e = 120◦.
Respectively substituting the value of 120◦ from this identity into sin(120◦ − x − c + e) and
sin(120◦ − x − a + e) in the fraction above, we obtain

sin(x + c) · sin(x + a)
sin(x + c) · sin(x + a) = 1.

This then completes the proof that AD, BE, and CF are concurrent.
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Figure 7

Looking Back

However, reflecting on the above proof in the problem solving style of Pólya(1945), it immediately
became clear that the preceding proof remains valid if the 120◦ angle was replaced by any angle
θ. Hence, the initial conjecture immediately generalises to the following theorem. This nicely
demonstrates the discovery function of proof as proving it led to discovering this further generalisation.

Theorem 1. Given a hexagon ABCDEF with AB = BC, CD = DE, EF = FA, and
∠A = ∠C = ∠E = θ, then AD, BE, and CF are concurrent at P .

In addition, the angle identity given in the proof is helpful in constructing a dynamic sketch as
shown in the online example available for the reader at: http://dynamicmathematicsle
arning.com/hung-generalization.html
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Figure 8

Collinearity of concurrency points

Further exploration of the dynamic geometry sketch subsequently revealed the following theorem.

Theorem 2. The point P defined as in Theorem 1, the powerpoint T 10 of △BDF , and the
circumcenter Q of △ACE are collinear (see Figure 2).

Proof. The proof follows directly from the 1894 theorem of Sondat-Sollerstinsky on perspective
orthologic triangles: If two nondegenerate orthologic triangles are also perspective, then the
perspector and the two orthology centers are collinear (Yiu, 2015).

The two triangles ACE and DFB are orthologic to each other since the perpendiculars from
vertices A, C and E, respectively to the sides FB, BD and DF of △BDF are concurrent in T .

Likewise the perpendiculars from vertices D, F and B, respectively to the sides CE, EC and
AC of △ACE are concurrent at its circumcenter Q. But as shown in Theorem 1, the two
triangles ACE and DFB are also in perspective to each other with the point of perspectivity
(perspector) located at P . Hence, according to Sondat-Sollerstinsky’s theorem, the point P , and

10Note that the powerpoint T of △BDF is located at the point of concurrency of the perpendiculars from

vertices A, C and E, respectively to the sides FB, BD and DF of △BDF . This is a well-known result

and can be proved with the concept of the power of a point or Carnot’s perpendicularity theorem.
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the two orthology centers T and Q are collinear.

Another noteworthy aspect of the configuration, which also follows directly from the Sondat-
Sollerstinsky theorem is that the line of perspective formed by the extension of the corresponding
sides of the two perspective triangles ACE and DFB is perpendicular to the line PTQ (Thebault,
1952).

Figure 9

Two six-point hyperbola

Though the isosceles triangles on the sides of △ACE are not in general similar to each other, our
hexagon construction reminded us of the similar isosceles triangles on the sides of a triangle that
produce the famed Kiepert hyperbola (Eddy & Fritsch, 1994). So we next explored whether some
of the concurrency points lay on analogous conics passing through the vertices. Experimentation
with the dynamic sketch of the configuration next revealed the following theorem involving two 6
point hyperbola. This is also illustrated in the dynamic sketch available at the URL given earlier.

Theorem 3. The points A, B, C, P, T and the orthocenter H1 of △ACE lie on a rectangular
hyperbola11 (see Figure 3). Likewise, the points A, B, C, P, Q and the orthocenter H2 of △DFB

11Rectangular hyperbola are also sometimes called equilateral hyperbola.
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lie on a rectangular hyperbola (not shown in Figure 3).

Proof. To prove the result, we first apply the following theorem, which is a corollary of the proof by
Thebault (1952) of the Sondat-Sollerstinsky theorem, and is formulated by Yiu (2015) as follows:
If ABC and A′B′C ′ are perspective at P and the perpendiculars from A to B′C ′, B to C ′A′, and
C to A′B′ intersect at Q′, then A, B, C, P, Q′ lie on a rectangular hyperbola.

Applied to our configuration in Figure 3, this theorem immediately implies that the points A, B, C, P ,
and T related to △ACE lie on a rectangular hyperbola (and likewise for the points A, B, C, P ,
and Q related to △DFB).

Next we use the Brianchon-Poncelet (1822) theorem which states that if the vertices of a triangle
lie on a rectangular hyperbola, then the orthocentre of the triangle also lies on the hyperbola.
Since both these hyperbola are rectangular, it now follows from this theorem that the orthocenters,
H1 of △ACE, and H2 of △DFB, respectively lie on the rectangular hyperbolas ABCPT and
ABCPQ. This concludes the proof.

The Brianchon-Poncelet theorem appears on several websites, and can be easily proven synthetically
(Besant, 1895:129) or analytically (Margetson & Buckingham, 1989). It provides a novel, but
quite accessible challenge for mathematically talented high school or college students. An additional
interesting property proved by Brianchon & Poncelet is that the centres of the rectangular hyperbolas
ABCPT and ABCPQ, respectively, lie on the nine-point circles of triangles ACE and DFB
inscribed on each of the hyperbola. This is also an accessible challenge to talented mathematical
students at different levels (Margetson & Buckingham, 1989).

It should also be noted that for the hyperbola ABCPT above to coincide precisely with the
corresponding Kiepert hyperbola of △ACE, the isosceles triangles on its sides need to be similar.
But since for our hexagon ABCDEF it is required that ∠A = ∠C = ∠E, it follows that the
hyperbola ABCPT will only coincide with the Kiepert hyperbola when △ACE is equilateral.

Interesting Special Case

Further dynamically exploring the special case of the hexagon ABCDEF , when ∠A = ∠C =
∠E = 120◦, next revealed the following theorem. This is also available for the reader to explore
at the earlier provided URL.

Theorem 4. Given a hexagon ABCDEF with AB = BC, CD = DE, EF = FA and ∠A =
∠C = ∠E = 120◦, then the line PTQ is parallel to the Euler line of △BDF .

However, in order to prove this theorem, we first need to prove the following Lemma. This useful
Lemma appears as a theorem in Fettis (1946), but the proof given below is somewhat different.

Lemma. Let ABC be a triangle with the first Fermat point T . Let S be the isogonal conjugate of
T . Then ST is parallel to the Euler line of triangle ABC.

Proof. Let DEF be the pedal triangle of S as shown in Figure 4. Then sides EF, FD, DE are
perpendicular to TA, TB, TC. If XY Z is the Napoleon triangle of ABC, then Y Z, ZX, XY
are also perpendicular to TA, TB, TC Thus, triangles DEF and XY Z have parallel sides, this
means DX, EY, FZ are concurrent at P . Consider the homothety with center P which swaps
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Figure 10

triangle DEF to XY Z. The circumcenter of DEF is the midpoint J of ST which swaps to the
circumcenter of XY Z, which in turn is the centroid G of ABC. (1)

The perpendicular lines from Y and Z respectively to CA and AB, meet at the circumcenter O of
ABC. The perpendicular lines from E and F respectively to CA and AB, meet at S. From this,
we see that the homothety swaps E → Y, F → Z; so S → O. (2)

From (1) and (2), we deduce that the homothety swaps the line JS (or TS) to Euler line GO, thus
ST ∥ OG. This completes the proof of the Lemma, and now we are ready to prove Theorem 4.

Proof of Theorem 4. Consider Figure 5. Let S be the reflection of E in DF . We see that
FE = FS = FA and DE = DS = DC. We get

∠ASC = 360◦ − ∠ASE + ∠CSE

= 360◦ − (180◦ − (∠AFE/2) + 180◦ − (∠CDE/2))
= (∠AFE/2) + (∠CDE/2)

But ∠A + ∠B + ∠C + ∠D + ∠E + ∠F = 720◦.
Therefore,

∠ASC = (∠AFE/2) + (∠CDE/2)
= 360◦ − (60◦ + (∠ABC/2) + 60◦ + 60◦)
= 180◦ − (∠ABC/2).

Draw a circle with center B and radius BA = BC, then since the angle subtended by chord AC at
the center of a circle is twice the angle subtended by the chord on the circumference, any angle on
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Figure 11

the circumference subtended by chord AC (on the appropriate side) will be 180◦ − (∠ABC/2).
Since ∠ASC = 180◦ − (∠ABC/2), the point S must lie on the circumference of the circle.
Hence, AB = BC = BS. So A and S are reflections of each other in the line BF , and we also
see that S coincides with the powerpoint T (since the perpendiculars from A, C and E respectively
to BF , BD and DF are unique). More-over, from the reflections around BF , BD and DF , we
note that all three angles surrounding T are equal to 120◦ ; hence T is the Fermat point of △BDF .
It is now not hard to further observe that Q is the isogonal conjugate of T, and hence, from the
Lemma, it follows that the line PTQ is parallel to the Euler line of △BDF .

Further Observations

From results proven in Beluhov (2009), it’s also interesting to note that for the special case above
when θ = 120◦, since the point T is the Fermat point of △BDF , that the Euler lines of triangles
TBD, TDF and TBF are concurrent at the centroid G of △BDF . The particular hexagon
explored here is a close ‘cousin’ of the so-called Haag hexagon, which is a hexagon ABCDEF ,
also with AB = BC, CD = DE, EF = FA but with ∠B = ∠D = ∠F = 120◦ (see
Schattschneider, 1990, p. 90; De Villiers, 2014). Like the hexagon discussed here, the Haag
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hexagon also has its main diagonals AD, BE, and CF concurrent. (This can easily be proved
from Jacobi’s generalisation of the Fermat-Torricelli point of a triangle). However, the Haag
hexagon also tessellates, which is not generally the case for the particular hexagon discussed in
this paper.

Concluding Remarks

This paper has briefly described the fruitful interplay between inductive and deductive processes
in the creation of some new mathematics, as well demonstrating the discovery function of proof.
It is hoped that it will provide some enrichment ideas to mathematics teachers at college and high
school for challenging their talented mathematics students students beyond the narrow confines
of the prescribed curriculum. Apart from the four interesting theorems themselves, students can
also learn a lot from constructing their own dynamic sketches of the results, and exploring their
properties further.

Web Supplement.
http://dynamicmathematicslearning.com/hung-generalization.html

Disclaimer. No potential competing interest was reported by the authors.

Acknowledgement. The authors wish to thank Waldemar Pompe from the University of Warsaw,
Poland for bringing the Sondat-Sollerstinsky theorem to our attention.

References

[1] Anghel, N. (2016). Concurrency and Collinearity in Hexagons. Journal for Geometry and
Graphics, Volume 20, No. 2, 159–171.

[2] Beluhov, N.I. (2009). Ten Concurrent Euler Lines. Forum Geometricorum, Volume 9,
271–274.

[3] Besant, W.H. (1895). Conic Sections Treated Geometrically. (9th Edition). London: George
Bell & Sons.

[4] Brianchon, C.J. & Poncelet, J.V. (1820-1821). Géométrie des courbes. Recherches sur la
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The 62nd International Mathematical Olympiad

Angelo Di Pasquale
IMO Team Leader, Australia

Angelo was twice a contestant at the International Mathematical
Olympiad. He completed a PhD in mathematics at the University
of Melbourne studying algebraic curves. He is currently Director
of Training for the Australian Mathematical Olympiad Committee
(AMOC), and Australian Team Leader at the International Mathe-
matical Olympiad.
He enjoys composing Olympiad problems for mathematics
contests.

The 62nd International Mathematical Olympiad (IMO) was held 14–24 July 2021. Due to COVID-
19, this was a distributed IMO administered from St Petersburg, Russian Federation. This was the
third time that Russia has hosted the IMO.

A total of 619 high school students from 107 countries participated. Of these, 64 were female.

To ensure the integrity of the contest, students sat the contest papers at Exam Centres in their own
countries. The exams were invigilated from St Petersburg using the Zoom video conferencing
platform. Moreover, the IMO Board appointed an IMO Commissioner for each Exam Centre. The
Commissioner was a resident of the country, but generally not a citizen. They were to be trusted
individuals at each Exam Centre who would ensure fair play in the administering of the contest
and in the scanning and uploading of students’ scripts.

As per normal IMO rules, each participating country may enter a team of up to six students, a
Team Leader and a Deputy Team Leader.1

Participating countries also submit problem proposals for the IMO. This year there were 175
problem proposals from 51 countries. The local Problem Selection Committee shortlisted 32 of
these for the contest and then went on to set the two contest exam papers.

At the IMO the Team Leaders, as an international collective, form what is called the Jury. The
Jury normally makes various decisions such as approving marking schemes, and setting medal
boundaries. However, this year, decisions such as these were made on behalf of the Jury by the
Jury Chair taking advice from the IMO Board and, if necessary, the IMO Ethics Committee.

The six problems that ultimately appeared on the IMO exam papers may be described as follows.

1. An easy number theory problem proposed by Australia.

2. An algebraic inequality proposed by Canada. Although intended to be a medium level
problem, it turned out to be much more difficult than many would have anticipated.

1The IMO regulations also permit countries to enter a small number of additional staff as Observers. These

may fulfil various roles such as meeting child safety obligations, assisting with marking and coordination

or learning about how to host an IMO.
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3. A difficult classical geometry problem proposed by Ukraine.

4. An easy classical geometry problem proposed by Poland.

5. A medium combinatorics problem proposed by Spain.

6. A difficult problem proposed by Austria. Although formally classified as an algebra problem,
it also contains flavours of number theory and combinatorics.

These six problems were posed in two exam papers held on Monday 19 July and Tuesday 20
July for 4.5 hours each day starting at a time between 07:30 and 12:00 Universal Coordinated
Time (UTC). This helped ensure the integrity of the contest as no student would finish the contest
before another had started. Each paper had three problems. The contestants worked individually.
Each problem was scored out of a maximum of seven points.

After the exams, the Leaders and their Deputies spent about two to three days assessing the work
of the students from their own countries, guided by marking schemes. A local team of markers
called Coordinators also assessed the papers. They too were guided by the marking schemes but
were allowed some flexibility if, for example, a Leader brought something to their attention in
a contestant’s exam script that was not covered by the marking scheme. The Team Leader and
Coordinators must agree on scores for each student of the Leader’s country in order to finalise
scores.

The contestants found Problem 1 to be the easiest with an average score of 4.39. Problems 2 and
3 were the hardest, each averaging just 0.37. The score distributions by problem number were as
follows.

Mark P1 P2 P3 P4 P5 P6
0 131 522 488 218 404 562
1 36 61 110 33 12 12
2 41 12 4 39 13 2
3 10 2 1 2 4 3
4 41 3 1 12 2 1
5 38 1 0 1 5 2
6 36 2 0 5 4 0
7 286 16 15 309 175 37

Mean 4.39 0.37 0.37 3.82 2.15 0.48

The medal cuts were set at 24 points for Gold2, 19 for Silver and 12 for Bronze. The medal
distributions3 were as follows.

Gold Silver Bronze Total
Number 52 103 148 303
Proportion 8.4% 16.6% 23.9% 48.9%

2This is the lowest cut for Gold in the history of the IMO.
3The total number of medals must (normally) be approved by the Jury and should not normally exceed half

the total number of contestants. The numbers of Gold, Silver and Bronze medals should be approximately

in the ratio 1:2:3.
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These awards were announced during the online closing ceremony. Of those who did not get a
medal, a further 98 contestants received an Honourable Mention for scoring full marks on at least
one problem.

Yichuan Wang of the People’s Republic of China was the sole contestant who achieved the most
excellent feat of a perfect score of 42.

The 2021 IMO was organised by the Ministry of Education of the Russian Federation, the Government
of St. Petersburg, Herzen University, and the Presidential Physics and Mathematics Lyceum No.
239, Talent Academy.

Hosts for future IMOs have been secured as follows.

6–16 July, 2022 Oslo, Norway
2–13 July, 2023 Chiba, Japan
2024 Kyiv, Ukraine
2025 Melbourne, Australia

Much of the statistical information found in this report can also be found on the official website of
the IMO.

www.imo-official.org

94



Mathematics Competitions Vol 35 No 1 2022

English (eng), day 1

Monday, 19. July 2021

Problem 1. Let n ≥ 100 be an integer. Ivan writes the numbers n, n + 1, . . . , 2n each on
different cards. He then shuffles these n + 1 cards, and divides them into two piles. Prove that at
least one of the piles contains two cards such that the sum of their numbers is a perfect square.

Problem 2. Show that the inequality

n∑
i=1

n∑
j=1

√
|xi − xj | ≤

n∑
i=1

n∑
j=1

√
|xi + xj |

holds for all real numbers x1, . . . , xn.

Problem 3. Let D be an interior point of the acute triangle ABC with AB > AC so that
∠DAB = ∠CAD. The point E on the segment AC satisfies ∠ADE = ∠BCD, the point F on
the segment AB satisfies ∠FDA = ∠DBC, and the point X on the line AC satisfies CX = BX .
Let O1 and O2 be the circumcentres of the triangles ADC and EXD, respectively. Prove that the
lines BC, EF , and O1O2 are concurrent.

Language: English Time: 4 hours and 30 minutes.

Each problem is worth 7 points.
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English (eng), day 2

Tuesday, 20. July 2021

Problem 4. Let Γ be a circle with centre I , and ABCD a convex quadrilateral such that each
of the segments AB, BC, CD and DA is tangent to Γ. Let Ω be the circumcircle of the triangle
AIC. The extension of BA beyond A meets Ω at X , and the extension of BC beyond C meets Ω
at Z. The extensions of AD and CD beyond D meet Ω at Y and T , respectively. Prove that

AD + DT + TX + XA = CD + DY + Y Z + ZC.

Problem 5. Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy
numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the
ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one
walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to
reorder the walnuts by performing a sequence of 2021 moves. In the k-th move, Jumpy swaps the
positions of the two walnuts adjacent to walnut k.

Prove that there exists a value of k such that, on the k-th move, Jumpy swaps some walnuts a and
b such that a < k < b.

Problem 6. Let m ≥ 2 be an integer, A be a finite set of (not necessarily positive) integers,
and B1, B2, B3, . . . , Bm be subsets of A. Assume that for each k = 1, 2, . . . , m the sum of the
elements of Bk is mk . Prove that A contains at least m/2 elements.

Language: English Time: 4 hours and 30 minutes.

Each problem is worth 7 points.
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Some Country Totals

Rank Country Total
1 People’s Republic of China 208
2 Russian Federation 183
3 Republic of Korea 172
4 United States of America 165
5 Canada 151
6 Ukraine 149
7 Israel 139
7 Italy 139
9 Taiwan 131
9 United Kingdom 131
11 Mongolia 130
12 Germany 129
13 Poland 126
14 Vietnam 125
15 Singapore 123
16 Czech Republic 121
16 Thailand 121
18 Australia 120
18 Bulgaria 120
20 Kazakhstan 117
21 Croatia 113
21 Hong Kong 113
23 Philippines 111
24 Belarus 109
25 Japan 108
26 India 106
27 France 105
27 Romania 105
29 Islamic Republic of Iran 104
30 Peru 103
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Distribution of Awards at the 2021 IMO

Country Total Gold Silver Bronze HM

Albania 11 0 0 0 1
Algeria 16 0 0 0 0
Argentina 66 0 2 0 2
Armenia 91 0 2 3 0
Australia 120 2 2 1 1
Austria 47 0 0 2 1
Azerbaijan 62 0 0 2 3
Bangladesh 68 0 0 3 2
Belarus 109 0 4 1 1
Belgium 68 0 0 3 3
Bolivia 28 0 0 0 1
Bosnia and Herzegovina 81 0 0 5 1
Botswana 0 0 0 0 0
Brazil 96 0 2 3 1
Bulgaria 120 1 3 2 0
Canada 151 3 3 0 0
Chile 23 0 0 0 2
Colombia 51 0 1 1 1
Costa Rica 23 0 0 1 0
Croatia 113 1 2 3 0
Cyprus 28 0 0 0 2
Czech Republic 121 1 3 1 0
Denmark 46 0 0 1 3
Ecuador 34 0 0 2 0
Egypt 2 0 0 0 0
El Salvador 37 0 0 1 1
Estonia 63 0 1 1 3
Finland 41 0 0 1 3
France 105 1 1 3 0
Georgia 74 0 1 3 1
Germany 129 2 2 1 1
Ghana 11 0 0 0 1
Greece 47 0 0 2 1
Honduras 13 0 0 0 1
Hong Kong 113 1 3 1 0
Hungary 101 0 1 5 0
Iceland 11 0 0 0 1
India 106 1 1 3 0
Indonesia 99 0 2 4 0
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Country Total Gold Silver Bronze HM

Iraq 16 0 0 1 0
Ireland 12 0 0 0 1
Islamic Republic of Iran 104 0 3 3 0
Israel 139 3 2 1 0
Italy 139 1 4 1 0
Japan 108 1 2 3 0
Kazakhstan 117 1 3 2 0
Kenya 2 0 0 0 0
Kosovo 23 0 0 0 1
Kyrgyzstan 34 0 0 0 2
Latvia 64 0 0 3 3
Lithuania 31 0 0 1 0
Luxembourg 7 0 0 0 1
Macau 60 0 0 3 2
Malaysia 74 0 2 0 3
Mauritania 7 0 0 0 0
Mexico 98 0 2 4 0
Mongolia 130 2 2 2 0
Montenegro 27 0 1 0 1
Morocco 33 0 0 0 3
Nepal 15 0 0 0 1
Netherlands 65 0 0 2 3
New Zealand 41 0 0 2 0
Nicaragua 25 0 0 1 1
Nigeria 6 0 0 0 0
North Macedonia 67 0 1 2 2
Norway 62 0 1 1 3
Oman 2 0 0 0 0
Pakistan 2 0 0 0 0
Panama 36 0 0 1 1
Paraguay 18 0 0 1 0
People’s Republic of China 208 6 0 0 0
Peru 103 0 2 4 0
Philippines 111 0 4 2 0
Poland 126 1 5 0 0
Portugal 60 0 1 2 1
Puerto Rico 27 0 0 1 1
Republic of Korea 172 5 1 0 0
Republic of Moldova 62 0 0 3 2
Romania 105 0 3 2 1
Russian Federation 183 5 1 0 0
Rwanda 3 0 0 0 0
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Country Total Gold Silver Bronze HM

Saudi Arabia 90 0 1 3 2
Serbia 102 1 2 1 1
Singapore 123 1 3 2 0
Slovakia 82 0 2 2 1
Slovenia 47 0 0 2 2
South Africa 53 0 0 3 1
Spain 50 0 0 1 3
Sri Lanka 25 0 0 0 2
Sweden 56 0 1 1 1
Switzerland 64 0 0 3 1
Syria 44 0 0 2 2
Taiwan 131 1 3 2 0
Tajikistan 54 0 0 3 1
Thailand 121 1 3 2 0
Trinidad and Tobago 10 0 0 0 1
Tunisia 57 0 1 1 2
Turkey 96 0 1 5 0
Turkmenistan 55 0 0 3 2
Uganda 3 0 0 0 0
Ukraine 149 3 2 1 0
United Kingdom 131 2 3 0 1
United States of America 165 4 2 0 0
Uruguay 17 0 0 0 1
Uzbekistan 51 0 1 1 1
Venezuela 24 0 0 0 2
Vietnam 125 1 2 3 0
Total (107 teams, 619 contestants) 52 103 148 98

N.B. Not all countries entered a full team of six students.

Angelo Di Pasquale

IMO Team Leader, Australia

Angelo.DiPasquale@amt.edu.au
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International Mathematics Tournament of the Towns

Andy Liu

In 1976, Andy Liu received a Doctor of Philosophy in mathema-
tics and a Professional Diploma in elementary education, making
him one of very few people officially qualified to teach from
kindergarten to graduate school. He was heavily involved in the
International Mathematical Olympiad. He served as the deputy
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Selected Problems and Solutions from the Fall 2021 Papers

1. In each of five bags are 30 coins. One bag contains only gold coins, another one contains
only silver coins, the third one contains only bronze coins, and each of the remaining two
contains 10 gold, 10 silver and 10 bronze coins. What is the minimum number of coins that
must be drawn, from any combination of bags, in order to determine the content of at least
one bag?

2. The convex n-gon A1A2 . . . An, with n > 4, is such that An−1AnA1 and AnA1A2 are
isosceles triangles, as are Ai−1AiAi+1 for 2 ≤ i ≤ n − 1. Prove that there are at least two
equal sides among any four sides of the n-gon.

3. There were 20 participants in a chess tournament. Each of them played every other participant
twice, once as white and once as black. We say that participant X is no weaker than
participant Y if X has won at least the same number of games playing white as Y and
also has won at least the same number of games playing black as Y. Do there always exist
two participants such that one is not weaker than the other?

4. In the first move, a point x is chosen in the segment [0,1], dividing it into two segments
[0, x] and [x, 1]. The product x(1 − x) is recorded. In each subsequent move, a point x is
chosen in a segment [a, b] with no other chosen points inside, dividing into two segments
[a, x] and x, b]. The product (x − a)(b − x) is recorded. Prove that the sum of all recorded
numbers never exceeds 1

2 .

5. Eight 1 × 3 cards are placed on a flat surface in the same orientation. Each is divided into
three 1 × 1 squares, each of which is either black or white. The cards may not be rotated
or reflected, and no two are identical. They may be moved in any direction by any distance
which needs not be integral. Is it possible to move the cards so that they do not overlap, all
the white squares form a connected region bounded by a closed polygonal line which does
not intersect itself, and the same is true for all the black squares?
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6. In triangle ABC, ∠C = 90◦ and AB = 1. What are the possible values of the length of
the chord of the circumcircle of ABC determined by the points on BC and CA tangent to
the incircle of ABC?

7. Anna and Boris play a game which starts with the number 7 on a board. Anna goes first
and turns alternate thereafter. In each turn, the player adds a digit to the existing number,
at the beginning, between any two digits or at the end. However, a 0 may not be added at
the beginning. The moving player wins if the resulting number is the squares of an integer.
Does either player has a winning strategy?

8. A parallelogram ABCD is divided by the diagonal BD into two equal triangles. A regular
hexagon is inscribed into triangle ABD so that two of its adjacent sides lie on DA and
AB and one of its vertices lies on BD. Another regular hexagon is inscribed into triangle
CDB so that two of its adjacent vertices lie on BC and CD and one of its sides lies on
BD. Which of the hexagons is bigger?

9. The wizards A, B, C and D know that the integers 1, 2, . . . , 12 are written on 12 cards, one
integer on each card. Each wizard gets three cards, and sees only the numbers on his cards.
The following true statements are made.
A: One of the numbers on my cards is 8.
B: The numbers on my cards are all primes.
C: The numbers on my cards are all multiples of the same prime.
Having heard these, D declares truthfully that he knows what numbers are written on the
cards of each wizard. What numbers are on the other two cards of A?

10. There is a rook on some square of a 10×10 chessboard. At each turn it moves to an adjacent
square in the same row or column. It visits each square exactly once. Consider each of the
two diagonals joining two corner squares of the chessboard,. Prove that the rook has made
two consecutive moves, first leaving the diagonal and then returning to it immediately.

11. Prove that for any positive integers a1, a2, . . . , an,

⌊
a2

1
a2

⌋
+
⌊

a2
2

a3

⌋
+ · · · +

⌊
a2

n

a1

⌋
≥ a1 + a2 + · · · + an.

12. Anna and Boris play a game which starts with 20 gold coins and 20 silver coins arranged
in a row at random. Anna goes first and turns alternate thereafter. In each turn, the player
takes a coin from either end of the row. When all the coins have been taken, Alice wins if
and only if she has obtained 10 coins of each type. Is it true for that any initial arrangement
of the 40 cons, Anna always has a winning strategy?

Solutions

1. The minimum number of coins drawn is five. We first show sufficiency. Draw one coin
from each bag. There must be at least one gold coin, at least one silver coin and at least one
bronze coin. At least one kind of coin can appear only once, say a lone bronze coin. Then
the bag from which it is drawn contains 30 bronze coins. We now show necessity. Suppose
four coins are drawn. If they are from at most three bags, let them all be gold coins. Then
one of these three contains 30 gold coins while each of the other two contains 10 coins of
each kind, but we cannot tell which is which. One of the bags from which no coins have
been drawn contains 30 silver coins while the other one contains 30 bronze coins. Again
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we cannot tell which is which. Finally, suppose we draw one coin from each of four bags.
In the following scenario, two cases are possible, and we cannot determine the content of
any bag.

Bag First Second Third Fourth Fifth
Draw Gold Gold Silver Bronze (none)

Case 1 Gold Mixed Silver Mixed Bronze
Case 2 Mixed Gold Mixed Bronze Silver

2. Divide the perimeter of the polygon into blocks of consecutive sides of equal length. If AB
and BC belong to different blocks, then AB ̸= BC. Since ABC is isosceles, we must
have AB = AC or AC = BC. In either case, ∠ABC is one of two equal angles in ABC,
so that it must be acute. Since the polygon is convex, it has at most three acute angles and
therefore at most three blocks. Thus all of its edges are of one of three lengths, and the
desired conclusion follows immediately.

3. Suppose the answer is negative. If two players have the same number of wins as white,
one of them is bound to be no weaker than the other. This is also true if they have the
same number of wins as black. It follows that the numbers of wins as white for the twenty
players are 19, 18, . . . , 2, 1 and 0, and the same can be said about the numbers of wins as
black. Suppose the 19-game winners are two different players, say A as white and B as
black. Consider the game with A as white and B as black. Since they cannot both win, this
situation is impossible. It follows that the same player wins 19 games as white and as black.
This player will not be weaker than any others. We have a contradiction.

4. Suppose that after n − 1 moves, the interval [0,1] has been divided into n subintervals of

lengths a1, a2, . . . , an from left to right. We have
n∑

i=1
ai = 1. For 1 ≤ i < j ≤ n, the

product aiaj is recorded exactly once, when the intervals of respective lengths ai and aj

are separated. No other numbers are recorded. Hence the sum of the recorded numbers is
S =

∑
1≤i<j≤n

aiaj . Now at least one ai is positive. Hence we have S < 1
2 since

1 =
(

n∑
i=1

ai

)2

=
n∑

i=1
a2

n + 2

 ∑
1≤i<j≤n

aiaj

 > 2S.

5. The task can be accomplished as shown in the diagram below.
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6. Let I be the incentre of triangle ABC and let the incircle be tangent to BC at D and CA
at E. Since ∠C = 90◦, IDCE is a square so that DE is the perpendicular bisector of IC.
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Let O be the circumcentre of triangle ABC. Drop perpendiculars from O to BC and CA,
intersecting the circumcircle at P and Q respectively. Then AP and BQ are the respective
bisectors of ∠A and ∠B, so that they intersect at I . Now

∠PCI = ∠PCB + ∠BCI = ∠PAB + ∠45◦ = ∠PAC + ∠ICA = ∠PIC.

Hence PI = PC. Similarly, QI = QC so that PQ is the perpendicular bisector of IC. It
follows that PQ is the unique chord of the circumcircle determined by DE. Since we have
∠POQ = 90◦, PQ = 1√

2 .

7. We claim that each player can prevent the other from winning. Anna cannot win on her
opening move. In any of her subsequent turns, she appends 3 or 7 at the end. Since the
square of an integer cannot end in 2, 3, 7 or 8, Boris must append (always at the end) 0,
1, 4, 5, 6 or 9 in order to win on the move. Now a number ending in 30, 70, 34 or 74 is
congruent modulo 4 to 2, and a number ending in 31, 71, 35, 75, 39 or 79 is congruent
modulo 4 to 3. None of them can be the square of an integer. It follows that Boris can only
win by appending 6. We consider three cases.
Case 1. The last digit of the current number is 0, 4 or 8.
Anna appends 7 while Boris appends 6. A number ending in 076, 476 or 876 is divisible by
4. The quotient obtained when dividing by 4 ends in 19, which is congruent modulo 4 to 3.
Hence the quotient is not the square of an integer, and neither is 4 times the quotient.
Case 2. The last digit of the current number is 2 or 6.
Anna appends 3 while Boris appends 6. A number ending in 276 or 676 is divisible by 4.
The quotient obtained when dividing by 4 ends in 59, which is congruent modulo 4 to 3.
Hence the quotient is not the square of an integer, and neither is 4 times the quotient.
Case 3. The last digit of the current number is odd.
Anna appends 3 or 7 while Boris appends 6. In either case, the number is divisible by 8.
Since they differ by 40, only one of them is a multiple of 16. Anna chooses 3 or 7 so that
this number is not divisible by 16. Hence it cannot be the square of an integer.
This proves that Anna can prevent Boris from winning. Exactly the same strategy can be
used by Boris to prevent Anna from winning.

8. Triangles BAD and DCB are congruent and have the same area. The former is dissected
into a regular hexagon, a small non-convex quadrilateral and a large non-convex quadrilateral.
The latter is likewise dissected, with an extra triangle. The two small quadrilaterals are
obtained from right triangles with an acute angle equal to the larger acute angle of BAD
and DCB, by cutting off a 30◦ − 30◦ − 120◦ triangle whose base coincides with the side
opposite this angle. It follows that the two quadrilateral are similar. The same argument
shows that the two large quadrilaterals are similar too. The coefficient of similarity is the
ratio of the side lengths of the two regular hexagons. Since there is an extra triangle inside
DCB, the hexagon inscribed in it is smaller than the one inscribed in ABD.

104



Mathematics Competitions Vol 35 No 1 2022


...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...........

...........................................................................................................................................
..........
..........
..........
..........
..........
..........
.......
.......
.......
.......
.......
.......
.......
.......
......

................
.
.
.
.
.
.
.
.
.
.
.
.
.
.

q
D B

A


...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...........

........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
......................................................................................................................................................................................................... .
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

B D

C

9. C may hold three of 2, 4, 6, 10 and 12, or three of 3, 6, 9 and 12. In order for D to cut the
number of possibilities down to one, he must hold at least one of 6 and 12. We consider
two cases.
Case 1. D holds both 6 and 12.
C must hold (2,4,10). With the prime 2 out of the picture, B may hold three of 3, 5, 7 and
11. In order for D to cut the number of possibilities down to one, he must hold the odd
prime not held by B. It follows that A holds (1,8,9).
Case 2. D holds only one of 6 and 12.
By symmetry, we assume that D holds 6 but not 12. Then C may hold any of (3,9,12),
(2,4,10), (2,4,12), (2,10,12) and (4,10,12). In the last scenario, C does not hold any primes.
Hence D must hold (2,3,6), forcing B to hold (5,7,11). Again, A must hold (1,8,9).

10. The diagram below shows the ten white squares on the diagonal D from the northwest
corner to the southeast corner, along with the eighteen black squares on the adjacent diagonals.
Since the starting square and the finishing square of the rook tour have opposite colours, at
most one of them is on D. From this square, only one move is made to an adjacent black
square. From every other squares on D, two moves are made to adjacent black squares.
Thus the total number of such moves is at least 19. However, the number of black squares
adjacent to D is only 18. By the Pigeonhole Principle, two moves are made to at least one
of them. It follows that when the rook exits D to this square, it must immediately return
to D. The same argument applies to the black diagonal from the southwest corner to the
northeast corner.
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.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......


....................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

11. We have 0 ≤ (an − a1)2 = a2
n − 2ana1 + a2

1 so that a2
n

a1
≥ 2an − a1. Since 2an − a1 is an

integer, ⌊a2
n

a1
⌋ ≥ 2an − a1. Similarly, ⌊ a2

k
ak+1

⌋ ≥ 2ak − ak+1 for 1 ≤ k ≤ n − 1. Summation
and cancellation yield the desired inequality.

12. We say that we are in equilibrium if before a move by Anna, she has the same number of
gold coins as Boris. We are in equilibrium at the beginning, and if we are in equilibrium at
the end, then Anna has won. Let the coins be placed on a 1 × 40 chessboard. Anna makes
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an arbitrary move whenever we are in equilibrium. To break the equilibrium, Boris must
take a coin different from the one Anna has just taken. We may assume that Boris takes
a silver coin after Anna has taken a gold coin. An odd number of gold coins and an odd
number of silver coins remain on the chessboard. Half of these coins are on black squares
and the other half on white squares. We may assume that there are more gold coins on
black squares than on white squares. Anna takes the coin on the end-square which is white.
Now both end-squares are black, and Boris must take one of them, exposing a white square
at that end. If equlibrium has not been restored, Anna takes the coin on this white square,
forcing Boris to take a coin from a black square. Since there are more silver coins on white
squares than on black squares, equilibrium must be restored at some point. Anna can start
all over again by making an arbitrary move. It follows that Boris cannot prevent her from
winning.

Andy Liu
acfliu@gmail.com
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