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From the President
Dear readers of Mathematics Competitions journal!

It is my great pleasure to announce the recipients of the 2020 Paul Erdős 
Award. The Awards Committee chaired by Alexander Soifer collected and 
assessed the nominations. The recommended candidates were approved by 
the Executive Committee of WFNMC. They are (in alphabetic order):

Gangsong Leng (China) 

Jaromír Šimša Czech Republic)

Jaroslav Svrcek (Czech Republic)

Congratulations to our distinguished colleagues for their outstanding 
achievements and meritorious national and international contributions!

We remind all that the Paul Erdős Award has been established to recognize 
contributions of persons who have played a significant role in the development 
of mathematical challenges with essential impact on mathematics learning. 
The following brief description of the main contributions of our awardees 
(taken from the report of the Awards Committee) shows that they all 
completely satisfy the requirements. 

Gangsong Leng, Shanghai University, Shanghai, China has served as a 
member of the China Mathematics Olympiad Main Examination Committee 
for the past 20 years. He was coach of the National Training Team of the China 
Mathematics Olympiad, and director of the CWMO Main Examination 
Committee. He was the national team leader of the China Mathematics 
Olympiad in 2007; and the Vice-Leader of China Mathematics Olympiad 
National Team in 2006 and 2009. During this period, he contributed many 
test questions for the Chinese Mathematics Competition. In 2005 to 2006, the 
Mathematics Trainers’ Guild (MTG) of the Philippines sought the expertise 
of Gangsong Leng to train Filipino students for their participation in the 
2006 Southeast Asia Mathematical Olympiad (SEAMO) which was held 
in Penang, Malaysia. From 2006 to 2010, he was selected to be the special 
training facilitator of Hong Kong students for the International Mathematics 
Olympiad. From 2011 to 2014, he was the guest facilitator of the Macau Team 
for IMO.
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Jaromír Šimša, Czech Republic, has served as Chairman of the National 
Committee of the Czech MO from 2000 through to the present. For 25 years 
he has been involved in training Czech contestants for the International 
Mathematical Olympiad. Several times he acted as the leader of the Czech 
Republic team at the IMO. He started the Junior Czech- Polish-Slovak 
Mathematics Competition, jointly with Waldemar Pompe of Poland. Many 
of his problems were used at the Czech-Polish-Slovak (CPS) Mathematics 
Competitions. All his problems are of a very high quality, serving not only 
as great competition challenges but also later as valuable teaching material.  
In fact, Jaromír Šimša is the author of more than 250 mathematics Olympiad 
problems used in the Czech Mathematical Olympiad over the past 30 years. 
In 2020, he will once again serve as the Leader of the Czech Team to the 
International Mathematical Olympiad.

Jaroslav Svrcek, Czech Republic, was for 12 years, 2004 to 2016, the 
Editor in Chief of the WFNMC journal Mathematics Competitions. From 
1996 to 2014 he was one of the most active mathematicians in the training 
of the Czech team for the International Mathematical Olympiad and during 
most of those years he was either Team Leader or Deputy Team Leader. He 
founded the Mathematical Duel (together with Jozef Kalinowski of Poland). 
He worked for years on a national Czech journal for students. For the past 20 
years, he served as Vice-Chairman of the Czech Mathematical Olympiad. In 
2020, he will once again serve as the Deputy Leader of the Czech Team to the 
International Mathematical Olympiad.

These short biographies can also be found on the WFNMC web site: 
http://www.wfnmc.org/erdos2020ann.html

It was expected that the awards would be presented at ICME-14 in July 
2020. Since the Congress has been postponed by one year, the ceremony will 
take place during the same Congress in July 2021.

My best regards,

Kiril Bankov 
President of WFNMC 

May, 2020
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Editor’s Page

Dear Competitions enthusiasts,  
readers of our Mathematics Competitions journal!

Following the example of previous editors, I invite you to submit to our 
journal Mathematics Competitions your creative essays on a variety of topics 
related to creating original problems, working with students and teachers, 
organizing and running mathematics competitions, historical and philo-
sophical views on mathematics and closely related fields, and even your 
original literary works related to mathematics.

Just be original, creative, and inspirational. Share your ideas, problems, 
conjectures, and solutions with all your colleagues by publishing them here.

We have formalized the submission format to establish uniformity in our 
journal.

Submission Format
Format: should be LaTeX, TeX, or Microsoft Word, accompanied by 

another copy in pdf.

Illustrations: must be inserted at about the correct place of the text of 
your submission in one of the following formats: jpeg, pdf, tiff, eps, or mp. 
Your illustration will not be redrawn. Resolution of your illustrations must be 
at least 300 dpi, or, preferably, done as vector illustrations. If a text is needed in 
illustrations, use a font from the Times New Roman family in 11 pt.

Start: with the title in BOLD 14 pt, followed on the next line by the au-
thor(s)’ name(s) in italic 12 pt.

Abstract: Include a 40 - 100 word abstract of your paper.

Main Text: Use a font from the Times New Roman family in 11 pt.

End: with your name-address-email and your website (if applicable).

Include: your high resolution small photo and a concise professional 
summary of your works and titles.
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Please submit your manuscripts to María Elizabeth Losada at 
director.olimpiadas@uan.edu.co

We are counting on receiving your contributions, informative, inspired 
and creative.

Best wishes,

María Falk de Losada 
Acting Editor, Mathematics Competitions

Past President, WFNMC
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Three Etudes in Mathematical Coloring

Alexander Soifer (asoifer@uccs.edu)

University of Colorado. Colorado Springs, USA

Born and educated in Moscow, Alexander Soifer has 
for over 38 years been a Professor at the University of 
Colorado, teaching math, and art and film history. He 
has published over 300 articles, and a good number of 
books. In the past several years, 7 of his books have 
appeared in Springer: The Scholar and the State: In the 
search of Van der Waerden; The Mathematical Colo-
ring Book: Mathematics of Coloring and the Colorful 

Life of Its Creators; Mathematics as Problem Solving; How Does One Cut a 
Triangle?; Geometric Etudes in Combinatorial Mathematics; Ramsey Theory 
Yesterday, Today, and Tomorrow; and Colorado Mathematical Olympiad 
and Further Explorations: From the Mountains of Colorado to the Peaks of 
Mathematics. He has founded and for 32 years ran the Colorado Mathema-
tical Olympiad. Soifer has also served on the Soviet Union Math Olympiad 
(1970-1973) and USA Math Olympiad (1996-2005). He has been Secretary 
of WFNMC (1996-2008), and Senior Vice President of the World Federation 
of National Mathematics Competitions (2008-2012); from 2012-2018 he was 
the president of the WFNMC. He is a recipient of the Federation’s Paul Erdős 
Award (2006). Soifer’s Erdős number is 1.

Abstract
Our original idea for the article was to create 
a braid of history and mathematics and present 
it in the form of three etudes. In retrospect, we 
see that these etudes also convey indivisibility 
of Time, interconnections between the Past, the 
Present, and the Future.
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Etude 1 
Issai Schur, His Theorem and His Numbers

1Issai Schur was born on January 10, 

1875, in the Russian city of Mogilyov 

(presently in Belorussia). Being a Jew, 

Issai could not enroll in any Russian 

university. At 13 he went to the 

German language Nicolai-

Gymnasium (1888–1894). That 

prepared him for entering a German 

university in 1894. In Berlin, on 

September 2, 1906, Issai Schur 

married Regina Malka Frumkin. On 

the personnel form, on the line 

“Arian,” Schur wrote “nicht” for himself and “nicht” for his wife.  The 

happy and lasting marriage produced two children, Georg and Hilde.  

Issai Schur gave most of his life to the University of Berlin, first as a 

student (1894–1901; Ph.D. in Mathematics and Physics summa cum 

laude, November 27, 1901), then as a Privatdozent (1903–1909), 

ausserordentlischer Professor (equivalent to an associate professor, 

December 23, 1909 –  April 21, 1913 and again April 1, 1916 – April 

1 Photograph of young Issai Schur, compliments of his daughter, Hilde Abelin-Schur. 
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1, 1919) and Ordinarius (equivalent to a full professor, April 1, 1919 –

September 30, 1935). The only three years away from Berlin, 1913–

1916, Schur spent at the University of Bonn.  

Issai Schur was elected to many academies of sciences. He was a 

legendary lecturer. Schur’s student and friend Alfred Theodor Brauer 

(Ph. D. under Schur 1928) recalls [Bra2] that the number of students in 

Schur’s elementary number theory courses often exceeded 400, and 

during the winter semester of 1930 even exceeded 500.  

Hitler’s appointment as Reichskanzler by President von Hindenburg on 

January 30, 1933 changed this idyllic life. Schur’s former student 

Menahem Max Schiffer recalls in his talk at the 4th Schur conference in 

May 1986 at Tel Aviv University, which was subsequently published 

[Schi]: 

Now, the year 1933 was a decisive cut in the life of every 

German Jew. In April of that year [April 7, 1933 to be precise] 

all Jewish government officials were dismissed, a boycott of 

Jewish businesses was decreed and anti-Semitic legislation was 

begun.   

Issai Schur was a famous professor, a pride of his University and of his 

profession. Yet no achievement was high enough for a Jew in Nazi 

Germany. Following two years of pressure and humiliation, Schur, 
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faced with imminent expulsion, 

‘voluntarily’ asked for resignation on 

August 29, 1935. On September 28, 

1935, Reichs- and Prussian Minister 

of Science, Instruction and Public 

Education, replied on behalf of Der 

Fürer und Reichskanzler, i.e., Adolf 

Hitler himself (see facsimile next 

page):2  

3Fürer and Reichskanzler has 

relieved you from your official duties 

in the Philosophical Facultät of the University of Berlin effective at the 

end of September 1935, in accordance with your August 29 of this year 

request. 

Schur was the last Jewish professor to lose his job at the University of 

Berlin. Schur was able to leave Germany in early 1939. Two years later, 

on January 10, 1941, on his 66th birthday, he passed away in Tel Aviv 

of a heart attack. 

2 Archive of Humboldt University at Berlin, document UK-Sch 342, Bd.I, Bl.25. 
3 Issai Schur, the collection of his daughter, Hilde Abelin-Schur 
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Letter relieving Issai Schur from his duties at the University of Berlin  

Courtesy of the Archive of the Humboldt University at Berlin  
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Schur’s 1916 Theorem appears as a useful tool, “a very simple lemma,” 

and is immediately used for obtaining a number-theoretic result related 

to Fermat’s Last Theorem. Nobody then asked questions of the kind 

Issai Schur posed and solved in this paper [Sch].  Consequently, nobody 

appreciated this result much when it was published.  Now it shines as 

one of the most beautiful, classic theorems of mathematics. 

Schur’s Theorem 32.1 ([Sch]). For any positive integer n there is an 

integer S(n) such that any n-coloring of the initial positive integer array 

[S(n)] contains integers x, y, z of the same color such that x + y = z. 

In this paper, Schur shows that the least such integer S(n) has the upper 

bound  where  denotes the largest integer not exceeding x. 

Only in 1973, was Schur’s upper bound improved, and only slightly, by 

Robert Irving [I] to . 

There are two definitions of the Schur Number, differing by 1. Let us 

define the Schur Number as the largest integer S(n), such that the 

integers 1, 2, …, S(n) can be colored in n colors in such a way that no 

color contains integers x,y,z such that x + y = z. 

In his 1916 paper, Schur established the following lower bound: S(n)  

. Having found a beautiful proof of it, I decided to offer this 

lower bound as the hardest, “problem 5”, in the 36th Soifer 

Mathematical Olympiad in April 2019 (formerly The Colorado 

!n eê úë û xê úë û

( )! 1 24n eê - úë û

³

( )3 1 2n -
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Mathematical Olympiad). Of course, Schur’s formula in n serves as a 

hint, making the problem easier than a good size particular case. For 

example, try to offer your students or professional mathematicians, who 

are not familiar with Schur’s result a problem like this: 

Can each of the integers 1; 2; …; 581,130,733 be colored in one of 

19 colors so that no color contains numbers x, y, z such that x + y = 

z? 

 

Schur’s lower bound is sharp for n = 1, 2, 3, which is easy to prove: 

S(1) = 1, S(2) = 4, and S(3) = 13.  

For n = 4, Schur’s lower bound gives 40, but in 1965, using a 

computer, Leonard D. Baumert and Solomon W. Golomb showed 

[BG] that in fact S(4) = 44.  

Finding the exact value of S(5) appeared to be very hard. In the 1970s, 

the best known bounds for S(5) were 157  S(5) 321, the lower 

bound obtained in 1979 by Harold Fredricksen [F] and the upper bound 

in 1973 by Earl Glen Whitehead [W].  

Only two decades later, in 1994, Geoffrey Exoo proved [Ex] that S(5) 

 160. Moreover, he writes [Ex]: 

Hint: for n = 19, ( )3 1 2n - = 581,130,733. 

£ £

³
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We have found approximately 10,000 different partitions 

[colorings] of [1, 160]; of these, four are symmetric 

[palindromal]. These 10,000 partitions are all ‘close’ to each 

other. In other words, one can begin with one of the partitions, 

move an integer from one set to another, and obtain a new 

partition. This can be contrasted with the situation for partitions 

of [1, 159] where we found over 100,000 partitions, most of 

which were not close in this sense. It is tempting to conclude 

that there are far fewer sum-free partitions of [1, 160] than of 

[1, 159]. 

Then Marijn J.H. Heule became interested in this problem. In 2018 his 

result appeared [H1] in AAAI (Submitted Tue, 21 Nov 2017 

22:54:59): S(5) = 160. Why was it significant? Because until his 

recent publication, the upper bound of S(5) stood at 315. 

Thus, for n = 5,  gives us 121 whereas the exact value is S(5) 
= 160. 

Marijn J.H. Heule 

( )3 1 2n -
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Marijn writes: 

We obtained the solution, n = 160, by encoding the problem 

into propositional logic and applying massively parallel 

satisfiability solving techniques on the resulting formula. We 

constructed and validated a proof of the solution to increase 

trust in the correctness of the multi-CPU-year computations. 

The proof is two petabytes in size and was certified using a 

formally verified proof checker, demonstrating that any result 

by satisfiability solvers—no matter how large—can now be 

validated using highly trustworthy systems.  

As we already know, the coloring of integers from 1 to 160 in 5 colors 

without a monochromatic pair and its sum, had been demonstrated first 

by Geoffrey Exoo. He even produced a palindromal coloring, i.e., 

coloring where numbers i and 160 – i are assigned the same color. I 

am showing here a palindromal coloring from Heule’s paper 

simply because it is, yes, colorful (see this coloring below). 

The asymptotic lower bound was slightly improved from Schur’s 

exponential base 3. Following Abbott and Moser 1966 [AM], Abbott 

and Hanson 1972 [AH], Exoo’s results allowed for the lower 

bound of ( ) ( ) (5 3.159818 15 331 nS n c c³ » )n for n > 5 and constant
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c [Ex]. Heule’s result [H1] brought it a bit higher: 

. 

In 2000, Harold Fredricksen and Melvin M. Sweet [FS] constructed 

colorings that proved new lower bounds for S(6) 536 and S(7) 1680. 

There are folks who do not appreciate proofs done with use of a 

computer. As my friend Paul Kainen wrote in Geombinatorics, 

“To reject the use of computers as what one may call “computational 

amplifiers” would be akin to an astronomer refusing to admit 

discoveries made by telescope.” 

 

( ) ( ) ( )5321 3.17176503n nS n c c³ »
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Etude 2 
The Chromatic Number of the Plane,  

Records and Prizes 
 
Unfinished, a picture 
remains alive, dangerous.  
A finished work is a dead 
work, killed. 
– Pablo Picasso 

We do not need to worry about the chromatic number of the plane 

problem (CNP) dying any time soon, despite major breakthroughs 

reported in the Special Issue of Geombinatorics in July 2018. To make 

these lines self-contained, let me repeat the definition and statement of 

the problem in the general case. CNP was given birth by the 18-year old 

teenager Eddie Nelson [S1] in November 1950: 

What is the smallest number of colors sufficient for coloring the 

plane in such a way that no two points of the same color are 

unit distance apart? 

This number is called the chromatic number of the plane, or CNP, and 

is denoted by . In April 2018, Aubrey de Grey shrank the range of 

by raising the lower bound from 4 to 5 [G]: 5 7. His first example 

of the unit-distance 5-chromatic graph included 20,425 vertices, which 

he then reduced to a graph on 1581 vertices. His result answered in the 

negative the May 4, 2002, $1000 problem of Ronald L. Graham, who 

c c

£ c £
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asked whether it was possible to 4-color the plane to forbid a 

monochromatic distance 1 [S1]. The problem creator and the problem 

solver met in San Diego, where Aubrey de Grey received the $1,000 

prize from the hands of Ronald L. Graham. On my request, they 

captured this landmark event, and thus the reader can in a sense 

participate in it. 

 
Ronald L. Graham presents Aubrey de Grey the Prize:  

$1,000. San Diego, September 22, 2018 

“I will certainly be adhering to the convention of framing the check 

rather than cashing it,” wrote Aubrey to Ron and me. 

Then came Marijn Heule, and in setting 7 consecutive world records for 

the minimal number of vertices in a unit-distance 5-chromatic graph, 

dramatically reduced that number to 529 vertices (the first 6 records you 

can see in [H1] and [S2]). I hope Marijn will present his latest record in 

form of an essay for Geombinatorics. 
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Below you can see a visualization of the Heule 529-vertex unit-distance 

5-chromatic graph. Five colors are used for the vertices. Only the center 

uses the 5th color (white). In fact, all Heule’s graphs are vertex critical. 

This implies that there exists a coloring in which every vertex can be 

the only one with the fifth color. On Aubrey’s suggestion, Marijn let 

the central vertex be the only one of the 5th color. 
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“I spent a few thousand CPU hours to find it [the 529-vertex record]. 

This seems the best that I can do with the current methods,” wrote 

Marijn to me on February 15, 2019 [H3]. 

Furthermore, Marijn Heule brought the record down to a 5-chromatic 

unit-distance 510-vertex graph. But the current world record stands at 

509 and belongs to the Russian engineer Jaan Parts from the city of 

Kazan. It will appear in 2020 in the Geombinatorics quarterly. I 

will address his record construction in future publications.  

---oOo--- 

Etude 3 
The Chromatic Number of the Plane, 

Problems and Prizes 
Of course, we are all interested in further reducing the size of the 

smallest 5-chromatic unit distance graph. We have a World Series of a 

mathematical kind. 

5-Chromatic World Series. Find the smallest 5-chromatic unit-

distance graph.

As we have said, the present record, at the time of submission of this 

paper, of 509 belongs to Jaan Parts. 

The title of the next problem rhymes: 
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CNP – Triangle-Free. Construct a triangle-free 5-chromatic unit-

distance graph.  

Book-Prize 5-Chromatic Triangle-Free Competition. Find the 

smallest 5-chromatic triangle-free unit-distance graph. 

Yes, as the prize for the smallest graph, constructed, say, by January 1, 

2021, I am offering a copy of the second expanded edition of The 

Mathematical Coloring Book [S3]. 

Why do I pose this problem when the smallest size of a graph in the 

first problem (without a triangle-free condition) is lower or equal to the 

size of the graph with this condition?  

The triangle-free condition makes the graph more embeddable. 

Moreover, the Exoo-Ismailescu result [EI] allows for a relatively small 

building block: the smallest unit-distance 4-chromatic triangle-free 

graph has only 17 vertices, whereas without a unit-distance 

requirement, the Grötzsch graph is not much smaller at 11 vertices. I 

therefore believe that in triangle-free unit-distance 5-chromatic graphs, 

we will succeed in lowering the order of the graph faster than in the 

general case. We could do it, I hope, ‘in real time.’ 

Ron Graham believes that every talk ought to have at least one proof. I 

agree, at least one proof, but also at least one joke. And so, in my March 

7, 2019, at Florida Atlantic University I proposed Ron’s next $1,000 
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problem, subject to his approval, of course: 

The Ronald L. Graham New $1,000 Problem. Prove or disprove the 

existence of a 6-chromatic unit-distance graph. 

On March 16, 2019, Ron replied: 

I approve of the new $1000 problem! 

To make this essay self-contained, let me repeat my old conjectures: 

CNP Conjecture for the Plane [S1].   

CNP Conjecture for E3 [S1].  

CNP Conjecture for the Euclidean n-space En [S1]: 

 

The exciting breakthroughs mentioned here and described in detail in 

the July-2018 Special Issue of Geombinatorics, and the popularity of 

The Mathematical Coloring Book (sold ca. 1000 hard copies and 64,000 

downloads of the 2009 edition [S1]), inspired Springer to sign a contract 

for the new expanded edition [S4] of The Mathematical Coloring Book. 

I hope it will appear in 2021 or so with these and further advances on 

the theme of this colorful problem. 

7.c =

( )3 15.Ec =

( ) 12 1.n nEc += -
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I am grateful to the Editor-in-Chief Maria Falk de Losada for reading 

my manuscript better than I have and sharing her suggestions on 

improving this essay. 

Bibliography 

[AH] Abbott, H. L., and Hanson, D., A Problem of Schur and its 

Generalizations, Acta Arithmetica, 20  (1972), 175–187. 

[AM] Abbott, H. L., and Moser, L., Sum-free Sets of Integers. Acta 

Arithmetica 11 (1966), 392–396. 

[BG] Baumert, L. D. and Golomb, S. W. "Backtrack 

Programming." J. Ass. Comp. Machinery 12, 516–524, 1965. 

[Ex]  Exoo, G., A Lower Bound for Schur Numbers and Multicolor 

Ramsey Numbers of K3, Electronic J. Combinatorics 1, No. 1, 

R8, 1–3, 1994.     

http://www.combinatorics.org/Volume_1/Abstracts/v1i1r8.html           

[F]  Fredrickson, H., Schur Numbers and the Ramsey Numbers 

N(3,3,...,3;2). J. Combin. Theory Ser A, 27 (1979), 371–379. 

[FS]  Fredrickson, H., and Sweet, M.M., "Symmetric Sum-Free 

Partitions and Lower Bounds for Schur Numbers." Electronic J. 

Combinatorics 7, No. 1, R32, 1–9, 2000. 



Mathematics Competitions. Vol 33 No. 2. 2020

26

http://www.combinatorics.org/Volume_7/Abstracts/v7i1r32.ht

m 

[G]  Grey, A.D.N.J. de, The Chromatic Number of the Plane Is at 

least 5, Geombinatorics XXVIII(1), 18–31. 

[H1]  Heule, Marijn J. H., Schur Number Five, Thirty-Second AAAI 

Conference on Artificial Intelligence  (AAAI-18), 6598–6606. 

[H2]  Heule, M.J.H., Computing Small Unit-Distance Graphs with 

Chromatic Number 5, Geombinatorics  XXVIII(1), 2018, 32–

50. 

[H3]  Heule, M.J.H., Private communication, February 15, 2019. 

[I]  Irving, R. W., An extension of Schur’s theorem on sum-free 

partitions. Acta Arithmetica 25:55–64, 1973. 

[Sch]  Schur, I. "Über die Kongruenz  (mod )." 

Jahresber. Deutsche Math.-Verein. 25, 114–116, 1916. 

[S1]  Soifer, A., The Mathematical Coloring Book: Mathematics of 

Coloring and the Colorful Life of Its Creators, Springer, New 

York, 2009. 

[S2]  Soifer, A., Progress in My Favorite Open Problem of 

Mathematics, Chromatic Number of the Plane: An Étude in 

Five Movements, Geombinatorics XXVIII(1), 5–17. 



Mathematics Competitions. Vol 33 No. 2. 2020

27

[S3]  Soifer, A., Chromatic Problems and Prizes, Geombinatorics 

XXVIII(4), April 2019, 206–210. 

[S4]  Soifer, A., The Mathematical Coloring Book: Mathematics of 

Coloring and the Colorful Life of Its Creators, Springer, New 

York, 2nd expanded edition, to appear in 2021 or so. 

[W]  Whitehead, E.G., The Ramsey Number N(3,3,3,3;2). Discrete 

Math 4(1973), 389-396. 

 



Mathematics Competitions. Vol 33 No. 2. 2020

28

Some Identities Involving Sums  
of Consecutive Squares

Shawn Godin

Cairine Wilson S.S., Orleans, Canada

Shawn Godin teaches high school mathematics at Cairi-
ne Wilson S.S. in Orleans, Canada. He is currently the 
chair of the Fryer, Galois and Hypatia contest creation 
committee for the Centre for Education in Mathematics 
and Computing (CEMC) at the University of Waterloo. 
He is also involved with the Canadian Open Mathematics 
Challenge hosted by the Canadian Mathematical Society 
(CMS). Shawn has also been long involved with the CMS 

problem solving journal Crux Mathematicorum, as former Editor in Chief, 
as well as editing various sections and contributing articles. Shawn is also 
involved with mathematics teacher associations in Canada, writing articles, 
doing workshops as well as outreach programs for students.

Abstract
In this article we use three problems from the 
book Five Hundred Mathematical Challenges 
to generalize some sums involving squares of 
consecutive integers whose sum is also a square. 
In the end we invite the reader to investigate 
further identities of similar types.
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1 Introduction

Identities involving sums of squares have been known for thou-

sands of years. Pythagorean triples, that is ordered triples of

positive integers (a, b, c) such that

a2 + b2 = c2 (1.1)

are a well known example. The complete solution to (1.1) is

given by

a = 2xy, b = x2−y2, c = x2+y2, where x, y ∈ Z+, x > y. (1.2)

Most introductory number theory textbooks will include sev-

eral theorems regarding sums of squares. Fermat’s sum of two

squares theorem [3] (theorem 2.15, p. 55) shows which positive

integers are expressible as the sum of the squares of two inte-

gers; Gauss proved which integers can be written as the sum of

three squares [3] (problem #12, p. 170); and Lagrange showed

[3] (theorem 6.26, p. 317) that every positive integer can be

expressed as the sum of squares of four integers. Since these

theorems deal with the squares of integers, zero is allowed so

we could get 9 = 32 + 02 + 02 + 02 = 22 + 22 + 12 + 02 as two

representations of 9 as a sum of “four” squares.

In this article we will explore identities where a sum of a

string of squares, most consecutive, is equal to a square. For the

1
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most part, we will use only high school algebra, a few congru-

ences (to make the divisibility arguments less cumbersome) and

the identity

12 + 22 + 32 + · · ·+ n2 =

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
. (1.3)

2 Three Problems

The following three problems appear in [1]:

Problem 4. Observe that

32 + 42 = 52,

52 + 122 = 132,

72 + 242 = 252,

92 + 402 = 412.

State a general law suggested by these examples and prove it.

Problem 226. Let

a1 = 22 + 32 + 62, a2 = 32 + 42 + 122, a3 = 42 + 52 + 202,

and so on. Generalize these in such a way that the number an

is always a perfect square.

2
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Problem 326. Observe that

22 + 32 + 42 + 142 = 152,

42 + 52 + 62 + 382 = 392,

62 + 72 + 82 + 742 = 752,

82 + 92 + 102 + 1222 = 1232.

State and prove a general result suggested by these examples.

Finding the perfect squares from problem 226 and writing 

the results out in a similar manner to the other two problems, 

we get

22 + 32 + 62 = 72,

32 + 42 + 122 = 132,

42 + 52 + 202 = 212,

52 + 62 + 302 = 312.

We are lead to wonder if, for each n there exist families of 

sequences a1, a2, a3, . . . , an, an+1, an+2 such that

a21 + a22 + a23 + · · ·+ a2n+1 = a2n+2 (2.1)

where a1, a2, a3, . . . , an are consecutive positive integers; and

an+1, an+2 are also consecutive positive integers.

3
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If so, we can rewrite (2.1) as

a2+(a+1)2+(a+2)2+ · · ·+(a+(n−1))2+(b−1)2 = b2 (2.2)

where b = an+2 and b − 1 = an+1. Equation (2.2) can be rear-

ranged and rewritten as

n−1∑
i=0

(a+ i)2 = 2b− 1 (2.3)

which simplifies to

na2 + n(n− 1)a+
n(n− 1)(2n− 1)

6
= 2b− 1 (2.4)

Problems 4, 226 and 326 correspond to n = 1, 2, 3, respec-

tively. We will look at each of these separately and then look at

the generalized case.

3 Solutions to the Three Problems

Problem 4 corresponds to n = 1 where we are dealing with

the square of one “consecutive” integer. Substituting into (2.4)

yields

a2 = 2b− 1 (3.1)

which implies that a must be odd, hence we can write a = 2k+1

which gives b = 2k2+2k+1. Thus we get the family of solutions

(2k + 1)2 + (2k2 + 2k)2 = (2k2 + 2k + 1)2 (3.2)

4
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which can be easily verified. We can rewrite this relation in the

whimsical form

n2 +

⌊
n2

2

⌋2

=

⌈
n2

2

⌉2

(3.3)

where n is an odd integer.

Problem 226 corresponds to n = 2 in which case (2.4) yields

b = a2 + a+ 1 (3.4)

so the family of solutions are given by

a2 + (a+ 1)2 + [a(a+ 1)]2 = [a(a+ 1) + 1]2. (3.5)

for any positive integer a.

Finally, problem 326 corresponds to n = 3. Equation (2.4)

becomes

2b = 3a2 + 6a+ 6 (3.6)

which means that a must be even. Writing a = 2k, we get the

identity

(2k)2+(2k+1)2+(2k+2)2+(6k2+6k+2)2 = (6k2+6k+3)2 (3.7)

which is true for all k ∈ Z+.

4 Values of n Which Yield Identities

From (2.4), it is evident that, to solve for b, we will need to know

the parity of
n(n− 1)(2n− 1)

6
. This corresponds to determining

5
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when

n(n− 1)(2n− 1) ≡ 0, 6 (mod 12). (4.1)

The solutions to n(n−1)(2n−1) ≡ 0 (mod 12) are n ≡ 0, 1, 4, 5, 8, 9

(mod 12) which is equivalent to n ≡ 0, 1 (mod 4). Similarly the

solutions to n(n − 1)(2n − 1) ≡ 6 (mod 12) are equivalent to

n ≡ 2, 3 (mod 4).

When n ≡ 0, 1 (mod 4), we can rewrite (2.4) as

na2 ≡ 1 (mod 2) (4.2)

which suggests that there are no identities of this type when n

is a multiple of 4. When n ≡ 1 (mod 4), a must also be odd.

Similarly, when n ≡ 2, 3 (mod 4), we can rewrite (2.4) as

na2 ≡ 0 (mod 2) (4.3)

which suggests that when n ≡ 2 (mod 4), a can be any positive

integer, while when n ≡ 3 (mod 4), a must be even.

We can rearrange (2.4) to yield

b =
na2

2
+

n(n− 1)a

2
+

n(n− 1)(2n− 1)

12
+

1

2
(4.4)

from which we will look at three different cases, based on n

modulo 4 (recall there are no identities when n ≡ 0 (mod 4)).

Substituting n = 4k + 1, n = 4k + 2, and n = 4k + 3 into

(4.4) yields the three families of solutions.

6
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When n = 4k+ 1 we get solutions for all positive integers a,

with

b = (2k+1)a2+(2k+1)(4k+1)a+12k2+1+
32k3 + 13k

3
(4.5)

which, for example, yield the identities:

32 + 42 + 52 + 62 + 72 + 82 + 992 = 1002 (k = 1, a = 3),

12 + 22 + 32 + · · ·+ 132 + 142 + 5072 = 5082 (k = 3, a = 1).

When n = 4k + 2, a must be odd. We get

b =
(4k + 1)a2

2
+ 2k(4k + 1)a+

(2k + 1)(32k2 − 4k + 3)

6
(4.6)

which holds for non-negative integers k and odd positive integers

a.

In the final case n = 4k + 3 and a must be even. We get

b =
(4k + 3)a2

2
+ (2k + 1)(4k + 3)a+

(k + 1)(32k2 + 28k + 9)

3
(4.7)

for non-negative integers k and positive integers a. For example,

one of the solutions (k = 2 so n = 11 and a = 2) is

22+32+42+52+62+72+82+92+102+112+122+3242 = 3252.

5 Next Steps

There are many different directions we can take our exploration.

The most natural question would be: are there identities of the

7
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form

a2 + (a+ 1)2 + (a+ 2)2 + · · ·+ (a+ n− 1)2 = k2, (5.1)

that is, can a sum of consecutive squares be a square? There are

solutions of this type, for example

182 + 192 + 202 + · · ·+ 282 = 772 (5.2)

and, the impressive

32 + 42 + 52 + · · ·+ 9632 = 17 2672. (5.3)

The solution to this problem involves the theory of the Pell equa-

tion, which is beyond the scope of this paper. Interested readers

can check [2], from which (5.2) and (5.3) came from entries in

the table on page 439.

To keep the problem of the same difficulty, we could explore

sums where the elements are not necessarily consecutive, but in

some other finite arithmetic sequence. For example in

72 + 132 + 192 + 252 + 312 + 10822 = 10832 (5.4)

7, 13, 19, 25, 31 is an arithmetic sequence with common difference

6, while 1082 and 1083 are consecutive. We could make both

arithmetic sequences have the same common difference to get

8
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something like

162+222+282+342+402+462+522+582+642+13772 = 13832

(5.5)

where 16, 22, 28, 34, 40, 46, 52, 58, 64 is arithmetic with common

difference 6 = 1383− 1377. Have fun generating your own iden-

tities.
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Abstract
During the Congress held on the occasion of the 
100th anniversary of the Polish Mathematical 
Society a special session devoted to “beautiful” 
problems that appeared on some mathematical
competitions was organized. In the article some 
information about the session and problems 
presented during the session are provided as 
well as a short note about Stefan Straszewicz, 
the creator the Polish Mathematical Olympiad.
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The Polish Mathematical Society was created in 1919 in Kraków. 

Among the founding members of the Society there were well known 

mathematicians of that time, such as Stanisław Zaremba and 

Kazimierz Żorawski, as well as young mathematicians who had just 

started their scientific careers, such as Stefan Banach, Otton Nikodym 

and Franciszek Leja. Zaremba was elected to be the first President of 

the Society. 

In September 2019, on the occasion of the 100th anniversary of 

the Society, the Jubilee Congress of Polish Mathematicians took place 

in Kraków. One of the Congress activities was a special session, 

organized and led by the author of this article1 . The session was 

entitled Zadania olimpijskie niezwykłej urody (Olympiad problems 

of outstanding beauty). 

Many mathematicians who have been involved with different 

mathematical competitions took part in this session and encountered 

a variety of outstanding problems. Some of these problems would be 

regarded as problems of special interest, mainly because of their 

original and nonstandard solutions. Sometimes just the formulation 

of the problem is fascinating.  

The session proved to be of great interest, although as many as 

21 other scientific sessions were taking place simultaneously, as well 

 
1  A modified version of this article was published in Polish in the journal of the Polish 
Mathematical Society Wiadomo–ci Matematyczne. 
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as panel discussions on teaching mathematics and the promotion of 

the Polish edition of the book by Dermot Turing X, Y & Z, The Real 

Story of How Enigma Was Broken with the participation of Dermot 

Turing himself.  

The mathematicians who presented problems were: Dominik 

Burek, Bartłomiej Bzdȩga, Andrzej Grzesik, Michał Krych, Barbara 

Roszkow-ska-Lech, Ryszard Rudnicki, Grzegorz Światek (who is 

now the chair of the Main Committee of the Polish Mathematical 

Olympiad), Edward Tutaj, Jakub Wȩgrecki and Michał 

Wojciechowski. In this article two extra problems are presented, one 

of them was discussed during the session (the problem presented by 

Krzysztof Oleszkiewicz) and one prepared by the organizer of the 

session. 

As was mentioned above, two talks were exceptional. In one 

case, the talk was longer. Each year three main prizes of the Polish 

Mathematical Society are awarded and they are given to the 

recipients solemnly during the opening ceremony of the Congress of 

the Polish Mathematical Society. The prizes are: the Main Banach 

Prize (for achievements in pure mathematics), the Main Steinhaus 

Prize (for achievements in applied mathematics), and the Main 

Dickstein Prize (for achievements in mathematical culture, in 

particular concerning the history of mathematics, popularization of 

mathematics and teaching of mathematics). This year the Dickstein 
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Prize was given to Michał Krych, and consequently he was invited to 

present a longer lecture. The Olympic session was an appropriate 

place for this presentation, as Krych was awarded the Dickstein Prize 

chiefly (but not only) for his prolonged active work for the Polish 

Mathematical Olympiad. Krych has worked on the committees of the 

Polish Olympiad for 47 years! He was a member of the Warsaw 

Regional Olympiad Committee for 47 years, being its Chair for 27 of 

them; moreover, since 2007 he has been the Vice-chair of the Main 

Committee of the Polish Olympiad. Thus, Krych in his lecture 

presented two problems and made some more general remarks. 

The first lecture, prepared by Danuta Ciesielska and Małgorzata 

Terepeta, was of a different nature. It was devoted to Stefan 

Straszewicz, the creator and the first chair of the Main Committee of 

the Polish Olympiad. Straszewicz was born in 1889 in Warsaw. He 

studied in Zurich and got his PhD in 1914; the supervisor of his PhD 

dissertation Beiträge zur Theorie der konvexen Punktmengen was 

Ernst Zermelo. In 1928 he was named professor of Warsaw Technical 

University. For some years he was a vice-rector of that university. In 

1953-1957 he was the President of the Polish Mathematical Society. 

For many years he was the Polish representative in the International 

Commission on Mathematical Instruction, being from 1963-1966 the 

vice president of that Commission. 
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In 1949 in Poland it was decided that mathematical olympiads 

for secondary school students would be organized. Straszewicz alone 

was asked by the authorities to organize this competition. The form 

of the olympiad proposed by him did not change thereafter for 70 

years. Straszewicz was the Chair of the Committee for 20 years. 

He was the person who made the final decision concerning the 

choice of problems for the competition and the list of winners. It was 

always done perfectly and there was never any dissatisfaction. 

Following each olympiad a booklet was published, that included all 

the problems with solutions prepared by Straszewicz. After each five-

year period, a book written by Straszewicz containing all the 

problems from the five most recent olympiads was published. 

Straszewicz prepared four volumes of such books, some collections 

were translated into English ([1]) and Russian ([2]). Straszewicz died 

in 1983. 

The year 2019 marked not only the 100th anniversary of the 

Polish Mathematical Society but also the 70th anniversary of the 

Polish Mathematical Olympiad. As mentioned earlier, this year 

Michał Krych was awarded the Main Dickstein Prize. It is interesting 

to point out that in 1979 the first person to be awarded the Main 

Dickstein Prize was precisely Stefan Straszewicz. 

A granddaughter of Straszewicz, a mathematician, Zofia 

Adamowicz, professor at the Mathematical Institute of the Polish 
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Academy of Sciences, also participated in the Congress and in the 

Olympiad Session.  

As is generally known, very frequently only after some attempts 

at the solution may one feel the full taste of a mathematical problem. 

Therefore, this article is divided into two parts. In the first one the 

general description of the session and some associated topics have 

been presented and the problems are formulated. In the second part, 

which will appear in the forthcoming issue of Mathematics 

Competitions, the sources of the problems will be provided and the 

solutions will be presented, giving our readers ample time to work on 

them. 

 

Problems 

Problem 1 (Ryszard Rudnicki). 

Assume that a polyhedron P is circumscribed about a 

sphere and it is possible to paint each side of P red or blue in 

such a way, that each two sides with a common edge are of 

different colours. Prove that the sum of the areas painted blue is 

equal to the sum of areas painted red.  
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Problem 2 (Michał Wojciechowski). 

Baron Münchhausen says that pines and birches grow in his 

magic forest and at the distance 1 kilometer from each pine there are 

precisely 10 birches. Is Baron Münchhausen telling the truth? 

Problem 3 (Edward Tutaj). 

A sequence is given by a recurrence relation 

xn+3 = xn + xn+1 · xn+2 

with the initial conditions x1 = x2 = x3 = 1. Prove that for each positive 

integer p some multiple of p is a term of (xn). 

Problem 4 (Barbara Roszkowska-Lech). 

Let a and b be positive integers such that ab+1 divides a2+b2. 

Show that   is the square of an integer. 

Problem 5 (Jakub Wȩgrecki). 

Each positive integer was painted in one of k colours. Show that 

there exist four pairwise distinct integers a,b,c,d painted in the same 

colour satisfying the conditions: 
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for some positive integers m,n.  

 

Problem 6 (Michał Krych). 

Show that if integers a,b satisfy the equation 2a2 + a = 3b2 + b, 

then a − b and 2a + 2b + 1 are the squares of integers.  

 

Problem 7 (Michał Krych). 

Assume that six points are given on edges of a tetrahedron 

A1A2A3A4, each one on a different edge. For each vertex of this 

tetrahedron we take a sphere containing this vertex and the three given 

points that are contained on the edges which have this vertex as an 

endpoint. Prove that those four spheres have a nonempty intersection. 

 

Problem 8 (Bartłomiej Bzdȩga). 

We are given a convex pentagon ABCDE with 

|AB| = |BC| = |CD|,   |AE| = |EB| = |BD|,  |AC| = |CE| = |ED|. 

Determine the measures of its angles.  

 

Problem 9 (Dominik Burek). 

The integers a1,a2,...,an satisfy the inequalities 

1 < a1 < a2 < ... < an < 2a1. 



Mathematics Competitions. Vol 33 No. 2. 2020

46

Show that if m is the number of different prime divisors of the product 

a1a2 ...an, then 

(a1a2 ...an)m−1 ≥ (n!)m . 

 

Problem 10 (Andrzej Grzesik). 

Determine the maximal number of lines in three-dimensional 

space such that all of them have one point in common and the angles 

between each two of them are the same.  

 

Problem 11 (Grzegorz Światek). 

A light ray moves in the region U := {(x,y) : x > 0,0 < y < x2} 

reflecting from the boundary components according to the rule of 

equal angles of incidence and reflection. Prove that its trajectory will 

reflect only a finite number of times. 

  

Problem 12 (Krzysztof Oleszkiewicz). 

Assume that r is a positive integer. Show that for any real 

numbers a1, a2,...,ar the inequality 

. 

holds. Determine for which numbers a1, a2,...,ar equality occurs. 
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Problem 13 (Krzysztof Ciesielski). 

Assume that each three out of six points in the plane are vertices 

of a scalene triangle. Prove that the shortest side of one of the 

triangles is at the same time the longest side of another. 
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Abstract
In this paper we will outline the history of the 
mathematical competition Kangaroo, describe 
the structure of the organisation behind it and 
in particular show a sample of past questions to 
give a flavour of what this competition is about. 
It should be underlined that Math Kangaroo is a 
popularising maths competition which is orga-
nised on a non-profit basis.

1  Introduction

In the 1998 edition of the Journal of WFNMC, Mathematics 
Competitions, Robert Geretschläger, a long standing member 
of both AKSF and WFNMC, reported about the - in those days 
fairly new - competition Math Kangaroo [RG]. Since then a lot 
has happened. In October of 2019, Meike Akveld was elected as 
the new president of the Association Kangourou sans Frontières 
(AKSF) and it is our honour to inform you with this article about 
what has happened - in a nutshell - in the past 20 years.

2  Early history of AKSF

In the early 80’s, Peter O’Halloran, a mathematics teacher from 
Sydney, invented a new kind of competition for Australian 
schools: multiple choice questions, corrected by computer, which 
meant that thousands of pupils could participate at the same time. 
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It was a tremendous success for the Australian Mathematical Na-
tional Contest.

In 1991, two French teachers (André Deledicq and Jean Pierre 
Boudine) decided to start a similar competition in France under 
the name “Kangourou” to pay tribute to their Australian friends. 
In the first edition 120,000 children from France took part.

In June 1993 the Board of the French Kangourou organised 
a European meeting in Paris, to which many of the organizers of 
mathematical competitions in European countries were invited. 
All were impressed by the steadily increasing number of parti-
cipants in the French Kangourou competition (120,000 in 1991, 
300,000 in 1992 and 500,000 in 1993). Seven countries (Belarus, 
Hungary, The Netherlands, Poland, Romania, Russia and Spain) 
decided to adopt that same scheme and the competition was im-
mediately a great success in all those countries.

In response to this success the General Assembly, consisting 
of the delegates of 10 European countries, decided to create the 
Association “Kangourou sans Frontières” (AKSF) in June 1994 
in Strasbourg at the European Council.

3 AKSF – facts and numbers

Since the founding of the Association, Math Kangaroo has turned out 
to be an overwhelming success. From a small, friendly and familiar 
European Association, AKSF has grown to be one of the world pla-
yers on the stage of mathematics competitions, always taking care to 
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preserve the aspect of friendliness. After the founding in 1994, many 
more European countries quickly joined and in the year 2000 Mexi-
co, the first over-seas country, became a member of the Association, 
soon followed by Venezuela in 2002 and many more Latin American 
countries in the following years. It didn’t take much longer for the 
competition to jump over to Asia and recently Australia, the parent 
of Kangaroo, also joined AKSF, about which we are very pleased. A 
few African countries are also among our members and we can now 
truly and proudly say that the name “Kangourou sans Frontières’’ i.e. 
“Kangaroo without borders’’ is absolutely justified – see Figure 1. In 
the near future we hope to have some more members from the African 
continent. 

Figure 1: dark blue = members of AKSF; light blue = applicants of AKSF

Numberwise the story is no less impressive – see Figure 2. 
From about half a million participating children and youngsters 
in the early nineties, the competition has grown rapidly to sur-
pass the 6 million participant limit in 2011 and has been fairly 
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stable ever since, counting 6,293,071 participants in the latest 
competition in 2019 which was organised in 85 countries. At the 
moment AKSF counts 79 countries which are provisional or full 
members of the association and 9 countries in applicant status, 
eagerly waiting to become a member of AKSF soon. For more 
detailed information see the AKSF [1].

Figure 2. Development of the number of participants in the international Kan-

garoo competition

4 Goals of AKSF

In the founding documents of AKSF the very first article states:

The Association aims at spreading basic mathematical cultu-
re by all  means and, in particular, by organizing an annual game 
contest to be held on the same day in all participating countries. 
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The purpose of the game contest is to stimulate and motivate the 
largest possible number of students (as a complement to other 
activities, competitions, Olympiads and rallies).

This is exactly how the competition should be understood i.e. 
it is not an elite competition to select for mathematical talent, 
but it is a competition which has as its main goal popularisation 
of mathematics in school, in particular AKSF wants to to spread 
the joy of mathematics, to support mathematical education in 
school and to promote a positive perception of mathematics in 
society. Over the past 20 years the role of mathematics in so-
ciety has changed and it has become clearer and clearer that we 
need young people with a good knowledge of mathematics to 
study STEM subjects as these are the subjects that may solve the 
problems of the future. Math Kangaroo aims at showing young 
people that maths can be fun and so hopes to keep more people 
on board the ship called “mathematics’’.

5 Structure of AKSF and of the competition

AKSF is an association governed under French law. Our mem-
bers are entities represented by agents and our rules state that a 
country cannot be represented by more than one member i.e. only 
one entity per country can run the competition. This entity is then 
responsible for the entire organisation of the Kangaroo competi-
tion in its country, whereby it should be explicitly stated that our 
statutes require that the competition be run in a non-profit way. 
This autonomy of the individual country gives our members a lot of 
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freedom and makes it possible to run the same competition on the 
same day (always the third Thursday in March) all over the world in 
many different countries with different (educational) cultures. 

The competition itself consists of six levels (Pre-Ecolier, Eco-
lier, Benjamin, Cadet, Junior and Student), according to the age 
or schooling of the participants, ranging from year 1 to year 12 
(each level covers two years). Each level consists of 24 to 30 
single-choice questions and takes between 60 and 90 minutes. In 
each level the competition starts with so-called 3-point-problems 
which are meant to be one-step-problems and should be solvable 
for the vast majority of the pupils. These simple, but beautiful 
warm-up problems are followed by 4-point and 5-point-pro-
blems. Set up this way the competition ensures that all partici-
pants can solve some of the problems and are succesful somewhere - 
a positive feeling is guaranteed for every one! In particular the 5-point 
problems are meant for the mathematically more gifted students and 
should give them something to think about. It is rare that a student 
solves all questions correctly and so a common feeling of managing 
some and failing some other problems is shared by all.

So how are these questions created? Each year the Association meets 
for four days at the so called Annual Meeting organised by one of its 
members. This means the meeting takes place in a different country 
every year and is a chance for our members to get to know other mem-
bers’ home and culture. Prior to this meeting each member is required 
to submit candidate questions for the next year’s competition so that 
a collection of over 1000 single choice questions is created (to be pre-
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cise 1,127 questions were submitted in 2019) which are then rated by 
the members before travelling to the annual meeting. Starting from 
this rating, the members work - divided up into working groups ac-
cording to the various levels - on the selection of the problems for the 
next year’s Kangaroo competition. Because of the enormous amount 
of expertise of both teachers, mathematicians and maths educators in 
our association the result is a high quality collection of original and 
fun problems. These problem sets are then translated by the individual 
countries into competition papers. Hereby each country has the free-
dom to exchange a certain but limited number of questions, e.g. if a 
particular question is not in accordance with the national curriculum.

6 Sample of problems

In this section, we will take a look at a few examples of Kangaroo 
problems taken from the 2019 papers [2], chosen to reflect the 
style typical for this particular competition.  Since the six age-le-
vels of the Kangaroo require quite a range of levels of language 
skills and mathematical knowledge, problems posed at different 
age-levels can have quite a different flavour. In order to illustrate 
this, we have chosen problems from the 2019 competition in the 
very popular levels Ecolier (for grades 3 and 4) and Cadet (for 
grades 7 and 8). In each level, we have selected one three-point 
problem, one four-point problem and one five-point problem.
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6.1 Ecolier 2019

Problem 6 (3 points)

Karina cuts out a piece of this form from the follow-

ing diagram:

Which of the following pieces can she cut out?

(A) (B) (C)

(D) (E)

Solution: This is a three-point problem designed for 8- or 9-

year-old students. As a three-point problem, it is meant to be

accessible for all. It should give them something to think about

and play with, without requiring any kind of school-based know-

ledge. This hefty restriction limits possible problems in this

category to puzzles, and this visual puzzle is quite typical.

A close look at the various options reveals a section in the

middle of the top row that looks exactly like tile (A). Once a

10
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student has found this, it is not really necessary for him or her 

to check that the other combinations are not present, but some 

participants in the competition may wish to do so, just to be 

sure. Taking a closer look at the symbols in the squares shows 

us that their orientations are not uniform. This is important to 

note, because (E) could otherwise also be considered a solution. 

The adjacent hearts in the upper right-hand corner are, however, 

not oriented in such a way that tile (E) could be considered to 

be “cut out” of the diagram.

This is certainly a problem that we would expect any active 

participant to solve correctly, assuming that they take it seri-

ously. Finding a solution does not require any “mathematical 

knowledge”, just a good eye and some concentration.

Problem 15 (4 points)

       A full glass of water weighs 400 grams. An empty glass 

weighs 100 grams. How much does a half-full glass of water 

weigh?

(A) 150 g (B) 200 g (C) 225 g (D) 250 g (E) 300 g

11
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Solution: This is a four-point problem, which is reflected in

the fact that finding a solution is not just a one-step process. In

order to solve this, we must note that the water in the full glass

weighs 400 − 100 = 300 g, and that the water in the half-full

glass therefore weighs 1
2 · 300 = 150 g. Adding this to the 100

g of the empty glass gives us 150 + 100 = 250 g for the half-full

glass, and therefore the correct answer (D).

Another way to solve this would be to take the average of

the two measures, but averages are not things students of this

age will typically think of. Of course, a very natural mistake

for a student to make if he or she does not think about the

problem very much, would be to say that a half-full glass weighs

half as much as a full one, and therefore weighs 200 g. If this

problem were to be used in the three-point section, this answer

would typically not be included among the distractors, as the

mistake involved will be made by many of the more distracted

participants. In the four-point section, they are advised to be

more careful, however.

A problem of this type should not be too difficult, but for

some participants the time available in the competition may not

be enough to solve all problems that would be accessible for

them in principle. We would not expect everyone to solve this,

12
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although it should be possible for all students to understand the 

solution quite readily if it is explained to them.

Problem 21 (5 points)

      Exactly 15 animals live on a farm, namely cows, cats and 

kangaroos. We know that exactly 10 animals are not cows and 

exactly 8 animals are not cats. How many kangaroos live on the 

farm?

(A) 2 (B) 3 (C) 4 (D) 10 (E) 18

Solution: As one of the last five-point problems, this one is

meant to be a bit tricky. As was the case with the four-point

problem presented, we would expect all participants to readily

understand the solution if it was shown to them, but they may

not find it on their own in the time they are given for the contest.

Of course, the solution comes down to opposites. If we know

that 10 out of 15 animals are not cows, we also know that 15−

10 = 5 of them are. Similarly, if we know that 8 out of 15 animals

are not cats, we know that 15 − 8 = 7 of them are. Since there

are 5 cows and 7 cats among the 15 animals, this leaves a total

of 15− 5− 7 = 3 kangaroos, and the correct answer is (B).

As becomes clear immediately, even the “hardest” problems

in the Ecolier group are quite do-able, and it is not unusual

13
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to have a fairly large number of perfect scores in this category.

This fits quite well with the stated intention of popularisation,

of course.

6.2 Cadet 2019

Problem 6 (3 points)

Five friends get together. Each of them gives a cupcake to

each of the others. They then eat all of the cupcakes that they

have been given. As a result, the total number of cupcakes they

originally had decreases by half. How many cupcakes did the

five friends originally have?

(A) 20 (B) 24 (C) 30 (D) 40 (E) 60

Solution: Since each of the five friends receives a cupcake

from each of the four others, the total number of cupcakes eaten

is equal to 5·4 = 20. Since this is half the number of cupcakes the

friends had originally, the number they had before they started

their feast was equal to 2 · 20 = 40, and the correct answer is

(D).

Note that this three-point problem is not really a one-step

problem as should normally be the case. For this problem, it

was decided that the two steps are both so tiny that they can

14
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essentially be treated as a single one. Anyone thinking logically 

about this and reading the question carefully should get this 

right.

Problem 13 (4 points)

      Which of the tiles shown cannot be formed by combining the 

two given pieces?

(A) (B) (C)

(D) (E)

Solution: This is a really nice puzzle. Three of the tiles are

quite easy to form, namely the three in the middle, (B), (C) and

(D). Each of these leaves the L-shaped piece in the orientation

shown, and all it requires is to rotate the small square in an

appropriate way. (That is, to get (B), it is rotated by 90◦ in a

clockwise direction, for (C) by 180◦ and for (D) by 270◦.) That

15
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leaves cases (A) and (E) to consider. Tile (E) is not possible, as 

there is no black corner which is two squares away from black 

squares in both directions, as must be the case with the black 

corner of the L-shaped piece. The correct answer is therefore 

certainly (E), but how can (A) be formed? In order to do this, 

both pieces must be rotated by 90◦ in a clockwise direction, and 

then placed together. This is not so obvious to see, and that 

makes this problem quite a bit harder for many students.

This is a nice medium-hard problem, well suited for four 

points. The answer cannot be found with a single step (this 

is a truism for problems asking which case out of several is not 

possible), but there is no formal mathematics and no calculation 

involved in the solution. Of course, competitors can draw the 

various cases, or rotate their papers to their hearts’ content.

Problem 30 (5 points, very last problem)

       A train is made up of 18 carriages. There are 700 passengers 

travelling on the train. In any block of five adjacent carriages, 

there are 199 passengers in total. How many passengers are in the 

middle two carriages of the train?

(A) 70 (B) 77 (C) 78 (D) 96 (E) 103

Solution: This is a very hard problem, and a very nice one.

16
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As the last problem on the paper, number 30 is often chosen as a

grand separator, with the intent of only being accessible to very

few of the participants. Such problems are generally avoided at

the very young age-levels, but prize winners in the upper age-

levels should be given a chance to earn their laurels. On the

other hand, such problems should also be very nice, not just

hard and dull, but hard and interesting. This problem certainly

fits the bill.

So, how do we solve it? At first glance, it is not obvious that

the situation described is at all possible. And even if it is, we do

not know whether the solution is unique.

First of all, let us assume that a solution does exist. For a

competitor, this is certainly a legitimate assumption. If there

were no solution, the problem would not be on the paper. We

do not know what the number of people in each of the carriages

is, but we can start out by letting a, b, c, d and e denote the

numbers in the first five carriages, respectively. Since the sum

in any five adjacent carriages is always the same, the number

of passngers in the sixth must be the same as the number in

the first, and this must therefore once again be a. By the same

argument, the number in the seventh must be b, the number in

the eighth must be c, and so on. For the 18 carriages, we get the

17
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following numbers:

a, b, c, d, e, a, b, c, d, e, a, b, c, d, e, a, b, c

Now, the magic of elementary algebra will do the rest of the work

for us. The total number of passengers on the train is equal to

700, and we therefore have

4a+ 4b+ 4c+ 3d+ 3e = 700.

Since the number in five adjacent carriages is always equal to

199, we have

a+ b+ c+ d+ e = 199,

which we can multply by 4 to obtain

4a+ 4b+ 4c+ 4d+ 4e = 796.

Subtracting the first equation from this one gives us d+ e = 96,

and this is precisely the number of passengers in the two middle

carriages. The correct answer is therefore (D).

Now, it is also easy to see that such a situation is indeed

possible. Numbers d and e can be chosen in any way, such that

d+e = 96 holds. If we then choose a, b and c in such a way that

a+ b+ c = 101 holds, all conditions of the problem are certainly

met. The situation is certainly possible, and the solution is,

perhaps somewhat surprisingly, unique.

18
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7 Conclusion

We would like to conclude this article with a few summarising 
words formulated as answers to questions you may have had be-
fore reading this article.

• • What is Math Kangaroo? Math Kangaroo is the world’s lar-What is Math Kangaroo? Math Kangaroo is the world’s lar-
gest international math classroom competition.gest international math classroom competition.

• • What is the goal of Math Kangaroo? Math Kangaroo helps What is the goal of Math Kangaroo? Math Kangaroo helps 
to popularize math between students, their families, their tea-to popularize math between students, their families, their tea-
chers and within the society.chers and within the society.

• • Why should my students participate in Math Kangaroo? Be-Why should my students participate in Math Kangaroo? Be-
cause the problems are original and fun as they are the pro-cause the problems are original and fun as they are the pro-
duct of the collective thinking of a very experienced group of duct of the collective thinking of a very experienced group of 
teachers, mathematicians and math educators from different teachers, mathematicians and math educators from different 
cultures all over the world.cultures all over the world.

• • Why should I, as a teacher, participate with my class in Math Why should I, as a teacher, participate with my class in Math 
Kangaroo? Because the Math Kangaroo problem collection  Kangaroo? Because the Math Kangaroo problem collection  
gives teachers around the world an extraordinary tool to im-gives teachers around the world an extraordinary tool to im-
prove their teaching and these problems allow the teachers to prove their teaching and these problems allow the teachers to 
present Maths in a recreational way.present Maths in a recreational way.

• • Why should society care about Math Kangaroo? Because Why should society care about Math Kangaroo? Because 
the Math Kangaroo problems motivate mathematical logical the Math Kangaroo problems motivate mathematical logical 
thinking from an early age, which is an absolute necessity for thinking from an early age, which is an absolute necessity for 
being succesful in today’s society.being succesful in today’s society.

We hope to have given you an insight in the association KSF 
which organises the annual Math Kangaroo competition and a 
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better understanding of the structure and the philosophy of the 
competition. Feel free to contact us with questions, comments or 
if you wish to join!
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Abstract
We present three problems and their solutions 
relating Geometry and Number Theory. We 
refer to problem 6 from the International Ma-
thematical Olympiad (IMO) 2001, proposed by 
A. Ivanov from Bulgaria, where an alternative 
solution by Law of Cosines and Ptolemy’s theo-
rem is shown. We also explore problem 9 from 
Cuban Math Olympiad 2007, and finally an ori-
ginal problem of the author involving angle bi-
sectors, collinearity and divisibility by 6.
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1 Introduction

One of the characteristics of many math Olympiad problems is

the way in which they target unsuspected or unexplored links

between different fields of elementary mathematics. In this arti-

cle we pursue problems sparked by relations between geometry

and number theory.

2 Problems

Problem 1. [1].

Let a, b, c, d be integers with a > b > c > d > 0. Suppose

that

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime.

Solution:

The equality

ac+ bd = (b+ d+ a− c)(b+ d− a+ c)

1
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is equivalent to

a2 − ac+ c2 = b2 + bd+ d2. (1)

Let ABCD be the quadrilateral with AB = a,BC = d, CD =

b, AD = c, �BAD = 60◦, and �BCD = 120◦. Such a quadrilat-

eral exists in view of (1) and the Law of Cosines. Let �ABC = α,

so that �CDA = 180◦ − α. Applying the Law of Cosines to tri-

angles ABC and ACD gives

a2 + d2 − 2ad cosα = AC2 = b2 + c2 + 2bc cosα.

Hence

2 cosα =
(a2 + d2 − b2 − c2)

(ad+ bc)
,

and

AC2 = a2 + d2 − ad · a
2 + d2 − b2 − c2

ad+ bc
=

(ab+ cd)(ac+ bd)

ad+ bc
.

Because ABCD is cyclic, Ptolemy’s theorem gives

(AC ·BD)2 = (ab+ cd)2.

It follows that

(ac+ bd)(a2 − ac+ c2) = (ab+ cd)(ad+ bc). (2)

Next, observe that

ab+ cd > ac+ bd > ad+ bc. (3)

2
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The first inequality follows from (a− d)(b− c) > 0, and the sec-

ond from (a− b)(c− d) > 0. Now assume that ab+ cd is prime.

It then follows from (3) that ab + cd and ac + bd are relatively

prime. Hence, from (2), it must be true that ac + bd divides

ad + bc. However, this is impossible by (3). Thus ab + cd must

not be prime.

Note. Examples of 4−tuples (a, b, c, d) that satisfy the given

conditions are (21, 18, 14, 1) and (65, 50, 34, 11).

Problem 2. [3].

Let O be the circumcenter of a triangle ABC, with AC = BC.

The line AO intersects BC in D. If BD and CD are integers

and AO − CD is a prime number, find these three numbers

(BD,CD,AO − CD).

Solution:

Let H be on AB such that CH ⊥ AB. Let AO = R, BD = x,

DC = y, AO − CD = p, �OAC = �OCA = α. Applying the

3
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Law of Sines to �AOC and �ACD we get

R

sinα
=

x+ y

sin 2α
⇒ cosα =

x+ y

2R
,

AD

sin 2α
=

y

sinα
⇒ AD = 2y cosα =

y(x+ y)

R
.

By the Angle Bisector Theorem applied to �ACD, we have

AO

OD
=

x+ y

y
⇒ AD

AO
=

x+ 2y

x+ y
⇒ AD = R · x+ 2y

x+ y
.

Therefore

y(x+ y)

R
= R · x+ 2y

x+ y
⇒ R2 =

y(x+ y)2

x+ 2y
.

This equation can be written as a quadratic in x:

yx2 + (2y2 −R2)x+ y3 − 2R2y = 0 (4)

with discriminant

∆1 = (2y2 −R2)2 − 4y(y3 − 2yR2) = R2(4y2 +R2).

To have integer solutions in the quadratic (4), we need ∆1 to be

a perfect square, i.e., (2y)2 +R2 = z2. The solution to this last

equation is the Pythagorean triple

y = mnv

R = v(m2 − n2)

z = v(m2 + n2)

4
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where m,n are relatively prime and of different parity. It follows

that ∆1 = v4(m4 − n4)2, and therefore the solutions to (4) are

x1 =
vm(m2 − 2n2)

n
,

x2 =
vn(n2 − 2m2)

m
.

Note that R > 0, so m > n, and x2 < 0. Therefore x = x1.

The condition R − y = p is written as v(m2 −mn− n2) = p. If

v = 1, then n | m2 − 2n2, and hence n | m2. This is impossible

because m,n are relatively prime. Therefore m2 −mn− n2 = 1

and v = p. Since n | vm(m2 − 2n2), gcd(m,n) = 1, and

gcd(n,m2 − 2n2) = gcd(n,m2) = 1, then n | v. Therefore n = 1

or n = p. If n = 1, then m = 2 which generates the solution

(x, y, p) = (4p, 2p, p). However, if x = 4p and y = 2p, then

R = 3p. But by triangle inequality R + R > x + y, so 6p > 6p,

which is a contradiction. Therefore n = 1 does not yield a solu-

tion and hence n = p.

If n = v = p we have

x = m(m2 − 2p2) = m((m2 − p2)− p2) = m(mp+ 1− p2),

y = p2m,

R = p(m2 − p2) = p(pm+ 1) = p2m+ p.

5
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Sincem2−mn−n2 = 1 and n = p, we havem2−pm−(p2+1) = 0.

This can be viewed as a quadratic in m with discriminant ∆2 =

5p2 + 4. Therefore we need to find p such that 5p2 + 4 = w2,

which implies 5p2 = w2 − 4 = (w − 2)(w + 2). Then w must be

of the form 5k+2 or 5k+3. If w = 5k+2, then p2 = k(5k+4).

Since 5k + 4 > k, then k = 1 and 5k + 4 = p2, so p = 3. If

w = 5k + 3, then p2 = (k + 1)(5k + 1). But 5k + 1 > k + 1, so

k+1 = 1, and k = 0. Then w = 3, so p = 1. But 1 is not prime.

Therefore the solution is p = 3 with x = 35 and y = 45. So that

(x, y, p) = (35, 45, 3).

Problem 3.

In triangle ABC, let �a and �b be the angle bisectors from the

vertices A and B respectively. Consider the extensions of �a

and �b to points A′ and B′ respectively, such that AA′ = 2�a,

and BB′ = 2�b. Show that there are infinitely many integer

sided non-equilateral triangles ABC where the points A′, C,B′

are collinear and also the perimeter is divisible by 6.

Solution:

6
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Denote by a, b, c the sides opposite to the vertices A,B,C re-

spectively. We proceed by barycentric coordinates to find an

equivalent condition depending on a, b, c for the collinearity of

the points A′, C,B′. Let

A(1, 0, 0), B(0, 1, 0), C(0, 0, 1).

Denote by X the intersection point of �a and BC. By the Angle

Bisector Theorem we know that BX
XC = c

b . Thus X has coordi-

nates
(
0, b

b+c ,
c

b+c

)
. This is the midpoint of the segment AA′,

hence

A′
(
−1,

2b

b+ c
,

2c

b+ c

)
.

In a similar manner we obtain

B′
(

2a

a+ c
,−1,

2c

a+ c

)
.

So, the points A′, C,B′ are collinear if and only if
∣∣∣∣∣∣∣∣∣

−1 2b
b+c

2c
b+c

0 0 1

2a
a+c −1 2c

a+c

∣∣∣∣∣∣∣∣∣
= 0.

From the second row this determinant is (a + c)(b + c) = 4ab.

This is equivalent to c(a + b + c) = 3ab. We will find positive

integer solutions to the equation

c2 + (a+ b)c− 3ab = 0. (5)

7
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The discriminant of this quadratic equation should be a perfect

square, obtaining

a2 + 14ab+ b2 = x2. (6)

This Diophantine equation has been studied extensively, [2],

a = 14n2 − 2mn, b = m2 − n2

satisfies (6) since

(14n2 − 2mn)2 + 14(14n2 − 2mn)(m2 − n2) + (m2 − n2)2 

= n4 − 28mn3 + 198m2n2 − 28m3n + m4,

= (m2 − 14mn + n2)2.

Thus,

c = 8mn− 7n2 −m2.

It is simple to verify that the triple (a, b, c) satisfies equation (5).

It remains to find conditions for the positive integer parameters

m,n such that a, b, c are the sides of triangle ABC. From a, b, c

being positive numbers and also from the Triangle Inequality we

obtain that 11
5 < m

n < 4. Clearly, the perimeter a + b + c is

6n2 + 6mn, divisible by 6. This completes the proof.

8
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A few such triangles are

(36, 21, 27)

(28, 45, 35)

(84, 40, 56)

(78, 55, 65)

(152, 65, 95)

(66, 91, 77)

(144, 84, 108).

Comment: There are many triangles with the given property

and perimeter not divisible by 6, for example, (7, 12, 9) and

(10, 21, 14).

3 New solutions to c2 + (a+ b)c− 3ab = 0

Our intention in this section is to show new solutions to the

Diophantine equation

c2 + (a+ b)c− 3ab = 0, (7)

with the property 6 | a+b+c. Unfortunately, the resulting a, b, c

are not necessarily sides of a triangle. The problem of finding

all positive solutions remains open for us, maybe the reader will

9
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be able to solve it.

The discriminant of this quadratic equation should be a perfect

square, obtaining

a2 + 14ab+ b2 = x2. (8)

This new equation can be rewritten as

x2 + 3(4b)2 = (a+ 7b)2,

and denoting y = 4b, and z = a + 7b, this leads to solving the

Diophantine equation

x2 + 3y2 = z2. (9)

Since we are only interested in finding infinitely many solutions,

and not necessarily all of them, we divide by z2, and we denote

u = x
z , v = y

z . Now, the equation becomes

u2 + 3v2 = 1,

and we are looking for rational solutions, i.e. rational points on

the ellipse. With this aim, we consider a line with rational slope

passing through the point (1, 0). That is to say, v = αu − α,

where α is a rational number. The result of intersecting this line

10
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with the conic is

u =
3α2 − 1

3α2 + 1
, v =

−2α

3α2 + 1
.

Replacing α by −α, the following triple (x, y, z) is solution to

equation (9).

x = 3α2 − 1,

y = 2α,

z = 3α2 + 1.

Setting α = 4k, the triple can be rewriten as

x = 48k2 − 1,

y = 8k,

z = 48k2 + 1.

Now, working back, we obtain infinitely many solutions a, b, c to

equation (7). Namely,

a = 48k2 − 14k + 1,

b = 2k,

c = 6k − 1.

Where k is a positive integer. Clearly a + b + c = 48k2 − 6k =

6k(8k − 1).

11
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Remembering Ronald Lewis Graham

October 31, 1935 – July 6, 2020

From the editor…

WFNMC has been truly fortunate in having highly distinguished 
mathematicians as keynote speakers at their federation congresses, 
among them Paul Erdős, John Conway and Ron Graham. We were 
privileged to listen to Ron speak at our VII Congress in Barranquilla, 
Colombia in 2014.

According to the American Mathematical Society (AMS), 
which he served as president, Ron Graham was “one of the principal 
architects of the rapid development worldwide of discrete mathema-
tics in recent years.”

His friendship with Paul Erdős gave the mathematics world al-
most 30 coauthored papers. It also led to Ron’s conception in 1979 of 
the Erdős number, or number of degrees a mathematician was distan-
ced from Erdős as co-author. As a direct co-author, Ron’s Erdős num-
ber, of course, was 1. Ron was also known for the Graham number, 
given in 1977 as an approximate solution to a problem of Ramsey 
Theory, and noted for a long time in the Guinness Book of Records.

Ron Graham was a close friend of Alexander Soifer, past pre-
sident of WFNMC, and they jointly attempted to get Paul Erdős to 
publish a book of his open problems. When asked to help us remember 
Ron Graham, Alexander Soifer wrote:
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“Ron was certainly among the most influential mathematicians 
of the U.S. He served as President of the American Mathematical So-
ciety, President of the Mathematical Association of America, member 
of the American Academy of Arts and Sciences, member of the Hun-
garian Academy of Sciences, Chief Scientist of Bell Labs, Endowed 
Chair at the University of California San Diego, etc., etc. Ron was not 
only a member of the National Academy of Sciences – he served two 
terms as its Treasurer. He showed me once his impressive Treasurer’s 
office at the Academy, across a narrow street from the U.S. Depart-
ment of State. All these accolades did not spoil Ron’s personality. He 
has always been open, friendly, curious, generous to a fault, sprinkling 
our conversations with lovely humor.

I remember him serving as the Chair of the Jury of the 2001 
International Mathematical Olympiad in Washington, D.C.; for repre-
sentatives of about 90 countries Ron was an easy going, humorous, yet 
principled shepherd.  

Paul Erdős “preached” (his term) to professionals, young and 
old. His open problems inspired generations. But he was not a natural 
lecturer, whereas Ron certainly was. His lectures were well composed 
– as pieces of music – elegant, deep, inspiring, yet lightened by hu-
mor. Ron excited every audience, from professional mathematicians 
to high school students who came to MIT to compete in the USA Ma-
thematical Olympiad.

 In 2014, Ron gave a brilliant keynote address at the Congress of 
World Federation of National Mathematics Competitions (WFNMC) 
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in Barranquilla, Colombia. All his audiences got their share of open 
problems and conjectures, some with cash prizes for first solutions. 

WFNMC Keynote speakers Ronald Graham1  
and Alexander Soifer, Barranquilla, July 22, 2014

Ron’s interests were not limited to mathematics and computer 
science. He was a fine gymnast, ping pong player,” unicyclist and pro-
fessional-level juggler with a passion for sports.

Peter Taylor also recalled Ron Graham as Chairman of the IMO 
Jury in Washington in 2001, and spoke of the outstanding job he did, 
amid difficulty. Recalling the help Ron as president of the MAA had 
given him, Peter mentioned that Ron would, in his view, be the “most 
impressive mathematics manager” as well a great mathematician.
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Ronald Graham was one of the leading mathematicians in 
the field of Ramsey Theory, yet he was never far from the goal that  
WFNMC has upheld of encouraging and aiding young mathemati-
cians to develop their talent. He will be sorely missed by people intri-
gued with problem solving worldwide. 

(See another photo of Ron and learn more about his support of 
solvers of open problems in Alexander Soifer’s article in this issue of 
Mathematics Competitions.)
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International Mathematics  
Tournament of Towns

Andy Liu

Andy Liu is a Canadian mathematician. He is a profes-
sor emeritus in the Department of Mathematical and 
Statistical Sciences at the University of Alberta. Liu 
attended New Method College in Hong Kong.He then 
did his undergraduate studies in mathematics at Mc-
Gill University, and earned his Ph.D. in 1976 from the 
University of Alberta, under the supervision of Harvey 
Abbott, with a dissertation about hypergraphs. He was 

the leader of the Canadian team at the International Mathematical Olympiad 
in 2000 (South Korea) and 2003 (Japan) and acts as vice-president of the 
Tournament of Towns.

Selected Problems from the Fall 2019 Papers

 

 

 

 

 

 

 

 

 

 

 

1  An illusionist lays the 52 cards of a standard deck in a row. In each 

step, the audience chooses an integer k not greater than the length 

of the row, and the illusionist removes either the kth card from the 

left or the k card from the right. The illusionist announces in 

advance that the Three of Clubs should be the last card which 

remains. For which initial positions of the Three of Clubs can the 

illusionist guarantee the success of the trick? 

Solution: 

We call the first position from either end an outside position, and 

every other position an inside position. Suppose the Three of Clubs 

starts in an outside position. If the audience chooses an inside 

position, the illusionist removes the corresponding card counting 
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from either end. If the audience chooses an outside position, the 

illusionist removes the card from the end opposite to the Three of 

Clubs. After each step, the Three of Clubs remains in an ouside 

position. Eventually it will be the only card which remains. 

Suppose the Three of Clubs starts in an inside position and the 

audience keeps choosing inside positions. The two cards which 

start in the outside positions will remain there. So any card which 

starts in an inside position, including the Three of Club, will not be 

the last card which remains. 

2. In each step, we may multiply a positive integer by 3 and then add
1 to the product. If the positive integer that results is even, we may 

divide it by 2. If the positive integer that results is odd, we may 

subtract 1 from it and then divide the difference by 2. Prove that 

starting with 1, we can obtain any positive integer in a finite number 

of steps.

Solution:

In the following table, the first row consists of the positive integers 

in order. The second row consists of the positive integers congruent 

modulo 3 to 1, in increasing order starting from 4. The third row 

consists of the positive integers alternatingly congruent modulo 3 

to 2 and 0, in increasing order starting from 2 and 3 respectively. 

The table extends indefinitely to the right.
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1  2  3  4  5  6 7  8  9 ⋯ 

4 7 10 13 16 19 22 25 28 ⋯ 

2 3 5 6 8 9 11 12 14 ⋯ 

Note that each positive integer in the second row fills a gap in the 

third row which occurs to its right. In each column, the number in 

the second row is generated by the number in the first row, and the 

number in the third row is generated by the number in the second 

row. Since we start with 1, we can obtain all three numbers in the 

first column, in particular, the 2 in the third row. This allows us to 

obtain all three numbers in the second column, in particular, the 3 

in the third row. This allows us to obtain all three numbers in the 

third column. The number in the third row is 5, skipping over the 

gap 4. However, as we have pointed out, the number 4 has already 

appeared. In this manner, we can obtain all three numbers in every 

column. Since the first row consists of all the positive integers, we 

have the desired result. 

3. ABC is an acute triangle with area S. K is a point inside ABC while

L and M are points on BC such that KLM is also an acute triangle,

with area 𝑆𝑆!. Prove that "
#$%#&

> "!

'(%')
.

Solution:
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Reflect A and K to D and N respectively across the line BC. Since 

ABC is acute, the kite ABDC has an incircle, with radius r. 

Similarly, the kite KLNM also has an incircle, with radius 𝑟𝑟! <

𝑟𝑟	since it is inside ABDC. The area of ABDC is 2S = r(AB + AC) 

and the area of KLNM is 2𝑆𝑆! = 𝑟𝑟′(𝐾𝐾𝐾𝐾 + 𝐾𝐾𝐾𝐾).  

Hence "
#$%#&

= *
+
> *!

+
= "!

'(%')
. 

4. Counters numbered 1 to 100 are arranged in order in a row. It costs

1 dollar to interchange two adjacent counters, but nothing to

interchange two counters with exactly k other counters between

them. What is the minimum cost for rearranging the 100 counters

in reverse order if

(a) k = 3;

(b) k = 4?

Solution:

(a) Paint the 100 positions red, yellow, blue, green, red, yellow,

blue, green, and so on. Then two counters on positions of the

same colour can be interchanged for free, while two counters in

positions of adjacent colours can be interchanged for 1 dollar.

If two counters on positions of adjacent colours are not adjacent

themselves, we can bring them next to each other using only

free moves. All counters in red positions must go to green

positions, and vice versa. All counters in yellow positions must
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go to blue positions, and vice versa. Since red and green are 

adjacent colours, we can spend 25 dollars to interchange the 50 

counters on them. Similarly, the 50 counters on yellow and blue 

positions can be interchanged for another 25 dollars, for a total 

cost of 50 dollars. We now use free moves to put every counter 

in its correct position. Since 100 counters must change the 

colours of their positions, and 1 dollar can only pay for 2 such 

changes, 50 dollars is the minimum cost. 

(b) Paint the 100 positions red, yellow, brown, blue, green, red,

yellow, brown, blue, green, and so on. Then two counters in

positions of the same colour can be interchanged for free, while

two counters in positions of adjacent colours can be

interchanged for 1 dollar. If two counters on positions of

adjacent colours are not adjacent themselves, we can bring them

next to each other using only free moves. All counters in red

positions must go to green positions, and vice versa. All

counters in yellow positions must go to blue positions, and vice

versa. All counters on brown positions must stay in brown

positions. Since red and green are adjacent colours, we can

spend 20 dollars to interchange the 40 counters on them. Yellow

and brown are adjacent colours, as are blue and brown. We can

spend 40 dollars to interchange the following pairs of counters:

(2,3), (4,2), (7,4), (9,7), (12,9), (14,12), (17,14), (19,17), …,
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(92,89), (94,92), (97,94) and (99,97). Now every counter is in a 

position of the correct colour, except that counter 3 is in a 

yellow position while counter 99 is in a brown position. Since 

yellow and brown are adjacent colours, these two counters can 

be interchanged for 1 dollar, bringing the total cost to 61 dollars. 

We now use free moves to put every counter in its correct 

position. The 40 counters in red and green positions must 

change the colours of their positions. Since 1 dollar can only 

pay for 2 such changes, 20 dollars are required. The 40 counters 

in yellow and blue positions must also change the colour of their 

positions. Since yellow and blue are not adjacent colours, 40 

dollars are required. However, these changes cannot be made 

without involving at least one counter in a brown position. It 

follows that 61 dollars is the minimum cost. 

5. The weight of each of 100 coins is unknown, but is one of 1 gram,

2 grams or 3 grams, and there is at least one of each kind. Show

how the weight of each coin can be determined using at most 101

weighings on a balance.

Solution:

More generally, we prove that n+1 weighings are sufficient for n≥3

coins. The key step is identifying one coin of weight 2 grams or

two coins with total weight 2 grams. The weight of each untested

coin can then be determined in one weighing. We use induction on
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n. For n = 3, we have one coin of each weight. Comparing them 

pairwise takes only 3 weighings. Suppose the result holds for some 

n≥3. Consider now n+1 coins. In the preliminary stage, compare 

coin A with the others one at a time, until equilibrium is not 

achieved for the first time. We may assume that this happens on the 

first weighing, with coin B, as otherwise we can apply the inductive 

hypothesis. By symmetry, we may assume that A<B. In the second 

weighing, we compare B with coin C. If there is equilibrium, the 

inductive hypothesis applies again. If B<C, then A is of weight 1 

gram, C is of weight 3 grams, and we have identified B as a coin of 

weight 2 grams. Henceforth, we assume that B>C. In the third 

weighing, we compare A with C. If equilibrium is not achieved, B 

is of weight 3 grams, the lighter of A and C is of weight 1 grams, 

and we have identified the heavier one as a coin of weight 2 grams. 

Suppose A=C. In the fourth weighing, we compare A+C with B. If 

A+C=B, then each of A and C is of weight 1 gram, and we have 

identified B as a coin of weight 2 grams. If A+C<B, then B is of 

weight 3 grams and we have identified A and C as two coins with 

total weight 2 grams. If A+C>B, then B is of weight 1 gram, and 

we have identified each of A and C as a coin of weight 2 grams. 

Since we have used 4 weighings to determine the weights of A, B 

and C, we have sufficient weighings left to determine the weights 

of the remaining coins.
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6. Prove that for each positive integer m, there exists at least one 

integer n>m such that both mn and (m+1)(n+1) are squares of 

integers. 

Solution: 

Note that n must be the product of m and the square of an integer. 

We choose this integer to be a linear function of m, namely pm+q 

for some positive integers p and q. Then  

n+1 = m(pm+q)2 +1 = p2m3+2pqm2+q2m+1. 

This must be divisible by m+1, and the quotient must be the square 

of an integer. We perform the following long division. 

 
It follows that q2−2pq+p2= 1, so that |p−q|=1. Now the quotient 

p2m2+p(2q−p)m+1 must be the square of pm+1. Hence 2q−p=2. 

Combined with q−p=1, we have q=1 and p=0, which is not 

acceptable. Combined with p−q=1, we have q=3 and p=4.  

For any positive integer m, we can choose n = m(4m + 3)2.  

Then mn = (m(4m+3))2 and n+1 = 16m3+24m2+9m+1 = 

(m+1)(4m+1)2. Hence (m+1)(n+1) = ((m+1)(4m+1))2. 
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7.  Peter has an 𝑛𝑛 × 𝑛𝑛	stamp, n>10, such that 102 of the unit squares 

are coated with black ink. He presses this stamp 100 times on a 

101 × 101	grid, each time leaving a black imprint on 102 unit 

squares of the grid. Is it possible that the grid is black except for 

one unit square at a corner? 

Solution: 

Remove the square at the intersection of the first row and the first 

column. Shade the rest of the first column but leave the rest of the 

first row unshaded. Divide the remaining part of the grid into four 

50 × 50 quadrants and shade the second and the fourth ones. Then 

the shaded regions can be mapped into the unshaded regions by a 

90° rotation. Peter’s stamp is 101 × 101, the same size as the grid. 

The inked squares consist of the same row of squares in the two 

shaded quadrants, along with the shaded squares in the same rows 

in the first column. By shifting the stamp up and down, Peter can 

make all shaded squares black. Then he can make the unshaded 

squares black by rotating the stamp 90°. The diagram below 

illustrates with a 9 × 9	grid. 
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8.  A cube consisting of (2n)3 unit cubes is pierced by several needles 

parallel to the edges of the cube, each piercing exactly 2n unit 

cubes. Each unit cube is pierced by at least one needle. A subset 

of these needles is regular if there are no two needles in the subset 

that pierce the same unit cube. 

(a)  Prove that there exists a regular subset consisting of 2n2 needles 

such that all of them have either the same direction or two 

different directions. 

(b)  What is the maximum size of a regular subset that is guaranteed 

to exist? 
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Solution: 

(a)  Call the needles x-needles, y-needles and z-needles according to 

their directions. Take the larger of the numbers of x-needles and  

y-needles in each 2𝑛𝑛 × 2𝑛𝑛 xy-layer, the larger of the numbers of  

y-needles and z-needles in each 2𝑛𝑛 × 2𝑛𝑛	yz-layer, and the larger 

of the numbers of z-needles and x-needles in each 2𝑛𝑛 × 2𝑛𝑛 zx-

layer. Let k be the minimum of all these 6n maxima. Consider the 

layer where the maximum is k. We may assume that it is an xy-

layer. It contains 2n−k rows and 2n−k columns free of x-needles 

and y-needles. The (2n−k)2 unit cubes at their intersection must 

pierced with z-needles. Paint these z-needles red. There are 

exactly k yz-layers which do not contain red needles. In each such 

layer, we can choose at least k y-needles, and the total from these 

k layers is at least k2 y-needles. Add them to the red needles, and 

we have a regular subset of size 

k2+(2n−k)2=k2+4n2−4nk+2k2=2n2+2(n−k)2≥2n2. 

(b)  By (a), a regular subset of 2n2 needles is guaranteed to exist. We 

now construct an example in which the maximum regular subset 

consists of exactly 2n2 needles, so that this is the desired value. 

Divide the 2𝑛𝑛 × 2𝑛𝑛 × 2𝑛𝑛 cube into eight 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cubes. Pierce 

with needles in each of the three directions all n3 unit cubes in the 

southwest 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cube in the bottom layer, as well as all n3 

unit cubes in the northeast 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛	cube in the top layer. Then 
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every unit cube in the 2𝑛𝑛 × 2𝑛𝑛 × 2𝑛𝑛 cube is pierced by at least 

one of the 6n2 needles. To obtain a regular subset, we must 

remove at least 2 needles from each of the 2n3 cubes that are being 

pierced in all three directions. This means the removal of at least 

4n2 needles, leaving behind the desired regular subset of size 2n2. 



International Mathematical Talent Search Part 1 and Part 2
By George Berzsenyi

A collection of many interesting and some unusual problems from 
the International Mathematical Talent Search (IMTS) and the USA 
Mathematical Talent Search (USAMTS), compiled in two books. 

Part 1 contains the problems and solutions of the first five years  
(1991–1996) of the IMTS, plus an appendix of earlier problems and 
solutions of the USAMTS. Part 2 covers the years 1996–2001 and its 
appendix offers some more problems from the USAMTS.

Available now at the Australian Maths Trust online shop: shop.amt.edu.au 

Need books for 
talented students?

Contact us

170 Haydon Drive, Bruce ACT 2617   
P 02 6201 5136  W amt.edu.au  

Follow us on

http://shop.amt.edu.au
https://shop.amt.edu.au/products/imts1
https://shop.amt.edu.au/products/imts2
https://www.amt.edu.au/
https://twitter.com/AustMathsTrust/
https://www.instagram.com/AustMathsTrust/
https://www.facebook.com/AustMathsTrust/


Australian Maths Trust
170 Haydon Drive, Bruce ACT 2617
Australia
Tel: +61 2 6201 5136


