A SOLUTION TO 1988 IMO QUESTION 6
(The Most Difficult Question Ever Set at an IMO)

Theorem

Ifa, b areintegers > 0 such that

(@ +bY)
9= (@b + 1)
is integral, then
g = (GCD(a,b))?

Proof

If ab = 0 (H.e.ifa = 0 or b = 0) the result is plain. This suggests using
induction on ab .

If ab > 0, we may suppose (from the symmetry of the problem) that a <
b, and the result proven for smaller values of ab .

The next step is to find an integer ¢ satisfying

2 2
R (1)
and 0<ec<b 2)
It will then follow by induction (since ac < ab ) that
g = (GCD(a,c))? (3)

To obtain ¢, we solve

@+ @+ AD
(@b + 1) = (@ +1 - ¢

Because these ratios are equal, we may subtract numerators and
denominators to give
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(a? - b?)

@b —ac) = 9
ie.

b + ¢)

" (sincewewant c # b).

so that
¢c =aq - b

Notice that ¢ is an integer, and
GCD(a,c) = GCD(a,b).
Therefore the proof will be finished if we can prove (2).

To prove (2) we note, on the one hand, that

@+ b
= (ab + 1)
@+ a b
ab =5 ta
giving
2
aq <% + ngbZ + b (sincea < b)
=2b
Thus
ag-b < b,
ie.
¢ < b
On the other hand
@+ d
9 = Tac + 1)
implies
ac +1 > 0
implies
-1
c > —
implies
¢ 20 (since ¢ isintegrall).
This completes the proof.
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Some further remarks

Let ¢ = k% (k apositive integer) be given. A careful study of the above
proof shows that all solutions

(a,b) (a,b integers > 0)
to
@ + b%)
@ +1) -~ ¢ 4)

are obtainable by applying a sequence of the operators (transformations)
S: (@,b) - (ba)
T: (a,b) — (a,aq - b)

to the solution (%,0). Because S2 (S applied twice) and T2 leave (a,b)
unchanged, every solution to (4) has the form

W(k,0)

where W denotes a (possibly empty) sequence of S’s and 7”s in which
adjacent operators are never the same. Conversely, if W is such a
sequence then W(k,0) is a solution to (4) because the operators S and T
leave the function

@ + b%)

(ab + 1)
unchanged.
In order to identify those solutions

(a,b) = W(k,0)

with a,b > 0, we display the first few applications of S and T to (k,0)asa
tree:
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(k,0)

/S/ '

(0,k) (k,k3)
T ls
(0,—k) (3 ,k)
I 4
(—£k,0) (B3R5 ~ B)
T ls
(—k,—Ek3) (B5 — k&%)

Evidently, the solutions (a,b) to (4) with a,b > 0 are
(k,0), (0,k); and WI(k,0)

where the sequence W ends in 7' (so that T is applied first to (k,0)).
One final remark (which we leave the reader to verify):

If ¢ = 1 there are exactly 3 such solutions;
If ¢ > 1 there are infinitely many such solutions.

Dr John Campbell,
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