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Abstract. In this paper, we illustrate the processes that students in a longitudinal study on 
problem solving used to construct and apply mathematical problem solving schema while 
solving challenging problems. 
 
1. Introduction 
1. 1. Importance of schema in mathematical problem solving 
 The goal of this paper is to illustrate how engaging students in solving strands of 
challenging problems can lead them to construct powerful problem-solving schemata. 
One characteristic that distinguishes expert mathematical problem solvers from less 
successful problem solvers is that experts have and use schemata—or abstract knowledge 
about the underlying similar mathematical structure of common classes or problems—to 
form solutions to problems. A summary of the research on the role of schema in 
mathematical problem solving (taken from Schoenfeld, 1992) is given below: 

• Experts can categorize problems into types based on their underlying 
mathematical structure, sometimes after reading only the first few words of the 
problem (e.g., Hinsley, Hayes, & Simon, 1977; Schoenfeld & Hermann, 1982).  

• Schemata suggest to experts what aspects of the problem are likely to be 
important. This allows experts to focus on important aspects of the problem while 
they are reading it, and to form sub-goals of what quantities need to be found 
during the problem solving process (e.g., Hinsley, et. al., 1977; Chi et. al., 1981). 

• Schemata are often equipped with techniques (e.g., procedures, equations) that are 
useful for formulating solutions to classes of problems (e.g., Weber, 2001).  

To illustrate, consider the following problem: Two men start at the same spot. The first 
man walks 10 miles north and 4 miles east. The second man walks 4 miles west and 4 
miles north. How far apart are the two men?   According to Hayes (1989), when 
experienced mathematical problem solvers read this statement, it will evoke a “right 
triangle schema” (problems in which individuals walk in parallel or orthogonal directions 
to one another can often be solved by constructing an appropriate right triangle and 
finding the lengths of all of its sides). The keys to solving such problems are framing the 
problems in terms of finding the missing length of a right triangle, setting as a sub-goal to 
find the lengths of two of the sides of the triangle, and using the Pythagorean theorem to 
deduce the length of the unknown side. 
1. 2. The use of challenging problems to promote schema construction 
 In this paper, we define a mathematical task as a situation in which an individual 
is given an initial situation and to accomplish this task, the student needs to apply a 
sequence of mathematical actions. A mathematical task is an exercise to an individual if, 
due either to the individual’s experience or the situation in which the problem is 
presented, it is obvious to the individual what actions should be applied. A task is a 
problem if it is not obvious which actions should be applied, either because the individual 
does not immediately recall appropriate actions or because there are several plausible 
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actions to choose from (cf., Schoenfeld, 1992; Weber, 2005). We call a problem 
challenging if the individual is not aware of a subset of the mathematical actions that are 
critical for solving the problem and will have to invent or discover these actions to be 
successful. For instance, most proofs in high school geometry are problems, and 
sometimes difficult ones, since the prover needs to decide which theorems and rules of 
inferences to apply from many alternatives (e.g., Weber, 2001). However, proofs that 
require the prover to create new mathematical concepts or derive novel theorems would 
make these proofs challenging problems. 

Because “problem solving expertise is dependent upon the acquisition of domain-
specific schemata” (Owen & Sweller, 1985, p. 274), many researchers argue that an 
important goal of the mathematics curricula should be to provide students with the 
opportunities to construct problem-solving schemas (e.g., DeCorte et. al., 1996; Reed, 
1999; Nunokawa, 2005). What is less clear is how this goal should be obtained; Marshall 
(1996) argues that the issues of how students construct problem solving schemas and 
what types of environments or instruction techniques might foster these constructions are 
open questions in need of research. 

Some psychologists and mathematics educators have suggested that students 
construct schema by transferring the solution of one problem to another superficially 
different but structurally analogous problem (e.g., Owen & Sweller, 1985; Novick & 
Holyoak, 1991). Unfortunately, students often have difficulty seeing the deep structure of 
problems and transferring the solution of one problem situation to another (e.g., Novick 
& Holyoak, 1991; Lobato & Siebert, 2002). Accordingly, it is suggested that schema 
construction can be facilitated by providing students with basic problems to which that 
schema applies, both to increase the likelihood of successful transfer and to minimize the 
cognitive load that students use to solve these problems, thus leaving more resources 
available for learning (Owen & Sweller, 1985). Our research on the long-term 
development of students’ mathematical reasoning suggests the opposite is true. We have 
found evidence that students often develop a rich understanding of essential ideas in the 
context of solving complex, challenging problems (Francisco & Maher, 2005). In this 
paper, we will illustrate how students developed a powerful combinatorial schema while 
solving strands of problems that were challenging (in the sense that was described earlier 
in this paper). 

 
2. Research context 
This research takes place within the context of a longitudinal study, now in its 18th year, 
tracing the mathematical development of students while they solve open-ended but well-
defined mathematical problems (cf., Maher, 2005). Many of these problems are 
challenging in the sense that students often initially are not aware of procedural or 
algorithmic tools to solve the problems but are asked to develop them in the problem-
solving context. In this environment, collaboration and justification are encouraged, and 
teachers and researchers do not provide explicit guidance on how problems should be 
solved. One aspect of this study was that students worked on strands of challenging 
tasks—or sequences of tasks that may differ superficially but pertain to the same 
mathematical ideas. The use of strands of related challenging tasks allows researchers to 
trace the development of students’ reasoning about a particular mathematical idea over 
long periods of time (e.g., Maher & Martino, 1996). 



Most studies examining schema construction or transfer take place over a short 
period of time in conceptual domains in which students have limited experience (Lobato 
& Siebert, 2002). However, meaningful mathematical schemata are likely constructed 
over significant stretches of time after students become accustomed with the domain 
being studied. Hence, Anderson, Reder, and Simon (1996) argue such studies seek 
evidence of schemata usage and transfer in places where one is least likely to find it. We 
are not aware of longitudinal studies in mathematics education that address schema 
acquisition. Hence, the longitudinal and empirical nature of the study that we will report 
has the potential to offer unique research findings in an important area. 
 One strand of task used in this study were variants of the following questions: 

• Suppose that you have three yellow Unifix® cubes and two red Unifix® cubes. 
How many different five-tall towers could you make with these Unifix® cubes? 
Justify your answer. 

• Suppose that you are ordering a pizza where you have five toppings to choose 
from. How many three topping pizzas can you order? Justify your answer. 

• Imagine that you have a coordinate-grid map of your city with the origin of the 
grid being your taxi stand and further that you are dispatched to pick up a 
passenger located 2 blocks south and 3 blocks east.  Is there a shortest route to 
this passenger? How do you know it is the shortest?  Is there more than one 
shortest route to each point?  If not, why not?  If so, how many?  Justify your 
answer. 

These problems all have the same underlying structure and can be understood in terms of 
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3
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ , or the third entry in the 

fifth row of Pascal’s triangle. In the longitudinal study, students were given extended 
opportunities to work with each of these questions. As the study progressed, they were 
able to link the first two problems to Pascal’s triangle. Later they used Pascal’s triangle 
and the other two problems to solve the Taxicab geometry problem. We will present a 
fine-grained analysis of how students were able to make these constructions. Each 
meeting with students was videotaped. Videotapes were analyzed using the methodology 
of Powell, Francisco, and Maher (2003). The results of these analyses were narratives 
that described how students reasoned about and learned mathematical ideas.  
 
3. Results 
 In this section, we examine how a group of five students (Ankur, Jeff, Brian,  
Michael, and Romina) solved three problems in 10th and 12th grade. The three problems 
were: 1) How many different pizzas can you make with four available toppings? 2) How 
many different five-tall towers can you make with three red and two yellow cubes? and 
3) The taxicab geometry problem given in the last bulleted point of the methodology 
section.  
3. 1. How many pizzas are there with four different toppings? 
 In a 10th grade session, Ankur, Jeff, Brian, and Romina used case-based reasoning 
and various counting strategies to obtain the correct answer—fifteen pizzas with toppings 
plus one pizza with only cheese. Michael developed a binary representation to create each 
of the pizzas. Each of the pizzas was represented using a four digit binary number, where 
each topping was associated with a place in that number, where a one signified that the 



topping was present on the pizza and a 0 signified that the topping was absent. For 
instance, with the four toppings- pepperoni, sausage, onion, and mushroom- the binary 
number 0010 would refer to a pizza with only onions. Michael was able to use this 
notation to explain why 16 pizzas could be formed when there were four toppings 
available and convince his group that there would be 32 pizzas if there were five toppings 
available (the other group members believed that there would be 31, not 32 pizzas). 
 At the end of the session, the researcher asked the group if this problem reminded 
them of any other problems, Brian responded “towers”—referring to the problem of 
forming four-tall towers from red and yellow cubes. However, Ankur noted the problems 
were “similar, but not exactly the same”, since more than one yellow could appear in an 
acceptable tower, but you couldn’t list mushroom more than once on the toppings of the 
pizza. All of the students at this time accepted Ankur’s explanation. The following week, 
Michael represented the towers problem using binary notation—the nth digit in the 
notation refers to the nth cube in the tower, with a 0 signifying a yellow cube and a 1 the 
red cube. For example, 0010 would represent a four-tall tower in which the third block 
was red but the other three were yellow. Hence, via this binary notation, Michael was 
able to show his group a correspondence between the towers and the pizzas. 
 There are two things worth noting about these problem-solving episodes. First, 
when students were initially comparing the pizza and towers problems to one another, 
they did not seem to see the deep structure between the problems. In fact, Ankur argued 
the problems differed significantly. The connections between the problems were not 
immediately perceived but were only constructed by Michael after reflection. Second, the 
notational system that Michael developed while working on the pizza problem was 
critical for the construction of his correspondence. 
3. 2. Linking the pizza problem, the towers problem, and Pascal’s triangle 
 One month later, students were invited to further explore the relationship between 
pizza problems and tower problems. They were asked to determine how many five-tall 
towers could be formed with three yellow blocks and two red blocks. Using Michael’s 
binary representation, they translated this problem to determining how many five-digit 
binary numbers with three 0’s and two 1’s could be formed. By controlling for where the 
first one in this sequence occurred, the students were able to deduce that 10 such towers 
could be formed. Note that the methods Michael developed to cope with the previous 
pizza problems were now a scheme that the students used to make sense of a new pizza 
problem (see Uptegrove, 2005). After obtaining their solution, a researcher introduced 
students to Pascal’s triangle, explained how the nth row of Pascal’s triangle were the 
coefficients of the expression (a + b)n, and that the terms in Pascal’s triangle are often 
represented using combinatorial notation. For instance, the fourth row—1, 4, 6, 4, 1—can 
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these coefficients might mean in terms of what they’ve just done. After thinking about 
these problems, the students were able to make these links. They noticed the 10 that 

appears in the fifth row in Pascal’s triangle corresponding to the expression 
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corresponded to five-tall towers with two red blocks (and three yellow blocks). Further 
investigations led these students to describe the relationship between Pascal’s triangle 



and the pizza problem—namely, that the 
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number of pizzas that could be formed with i toppings if there were n to choose from. 

These students could also explain why 
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Identity) were true by using the towers problem and the pizza problem. 
3. 3. Solving the taxicab problem 
 Two years later, Michael, Romina, Jeff, and Brian (now in 12th grade) were given 
a version of the taxicab problem discussed in the methods section. In essence, they were 
asked how many ways that a taxi could take a shortest route along a grid to go four 
blocks down, one block right; three blocks down, four blocks right; and five blocks 
down, five blocks right. This qualifies as a challenging problem for the students. The 
solution to this problem more or less requires the application and use of combinatorial 
techniques, yet the students solving this problem had not used such techniques before to 
solve novel problems. The initial stages of the students’ activity were exploratory in 
nature. They worked to make sense of the problem, posed some initial conjectures that 
turned out to be incorrect (e.g., the distance from the starting point to the endpoint would 
tell you the number of shortest routes), and tried to answer the question by explicitly 
drawing and counting the routes.   
 Romina asks if it would be possible to “do towers” to the problem. Michael and 
Romina note that the distance to one of the points is 10 and wonder if the total number of 
shortest routes to that point is 210. Later, the students attempted to solve the problem by 
finding the number of shortest routes to corners close to the point of origin (e.g., there are 
two shortest routes to go one down, one right; three shortest routes to go two down, one 
right). This yields a table like the following: 
1 1 1 1 1 
1 2 3 4 5 
1 3 6 10 12 
1 4 10 15  
1     
 (where the mth by nth cell in the table represents the number of shortest paths to go m 
units to the east, n units south).  

Romina notices that the fourth diagonal of this table is the sequence 1 4 6 4 1 and 
declares, “It’s Pascal’s triangle”, where the diagonals in the table correspond to the rows 
of Pascal’s triangle. Jeff notes that the 12 and the 15 in the next diagonal would not be 
correct if this was the case and ask Brian to re-evaluate the number of routes it takes to go 
four over and two down. When Brian announces that he found 15 routes, Michael 
comments, “it means that it is the triangle”. A little later, Romina writes a 20 in the box 
for three right, three down while Brian worked on re-computing this value. At this point, 
Michael asked his colleagues how they knew it was 20. Jeff responded that if they can 
show the triangle works, they don’t need to verify that it’s 20.   

 To understand why Pascal’s triangle would provide the number of shortest routes 
to any points on the grid. Romina announces that she will try and relate the triangle back 
to the towers and focuses on the 1 2 1 diagonal. She notes that all of the points on this 
diagonal are two away from the starting point and this also forms the second row of 



Pascal’s triangle. Further, she notes a connection between the middle entry in that 
column—with towers, the middle entry would refer to a two-tall tower with one yellow 
and one red block; with taxicabs, this refers to a trip with one across and one down. 
Likewise, the entry two down, one right, would refer to a tower that was three tall, with 
two yellow and one red block, or the taxicab location three away, with two down and one 
across. The students filled in the rest of their grid in accordance with Pascal’s triangle. 
For instance, when they filled in the cell for five down, two over, they reasoned that the 
number of routes would correspond to the fifth entry of the seventh row of Pascal’s 
triangle (not counting the beginning 1) since it would be “five of one thing and two of 
another thing”. At a researcher’s request, Michael also explains the connection between 
Pascal’s triangle and the pizza by using his binary number notation. For the taxicab 
geometry problem, a 0 would indicate going down and a 1 would indicate going across. 
Hence, using the example of going two down and one across, one would need to find the 
number of binary strings that have two 0’s and one 1. In their work relating Pascal’s 
triangle to the pizza problem, the group had already established that this would be the 
first entry (ignoring the first 1) of the third row of Pascal’s triangle. Finally, the group 
was able to use these constructions to answer the given questions. For instance, the 
number of shortest routes to the point that was five right and five down would be 
Correspond to the fifth entry of the tenth row of Pascal’s triangle. 

 
4. Discussion 
 In the first two excerpts above, we illustrated how students constructed a powerful 
problem-solving schema for solving combinatorial problems. We then illustrated how 
students applied that schema to solve the challenging Taxicab geometry problem. The 
application of this schema not only allowed them to construct the solution to the problem, 
but it also provided them with a deep understanding of their solution and enriched the 
schema that they constructed. In this section, we will discuss four aspects of our problem-
solving environment that enabled students to make these constructions. 
 First, students were asked to work on challenging problems. If students were 
asked to work on problems in which they had already learned techniques for addressing 
them, they may have attempted to see whether various techniques that they had learned 
would be applicable to the problem. As the students needed to develop techniques to 
make progress on these problems, this was not an option for these students. A particularly 
important precursor toward developing the schema that these students constructed was 
the development of useful ways of representing the problem. Michael’s binary 
representation of the towers and the pizza problem, in particular, paved the way for 
students seeing the deep structure that these problems shared. One general finding from 
the longitudinal study was that students developed powerful representations in response 
to addressing challenging problems (Davis & Maher, 1997; Maher, 2005). 
 Second, students were asked to work on strands of challenging tasks—or 
problems that were superficially different but shared the same mathematical structure. 
This provided students with the environments in which schema could be constructed. 
Researchers also fostered this construction by encouraging students to think about how 
the problems they were solving might be related to problems that they had solved in the 
past. However, we believe that having students work on strands of challenging tasks is a 
necessary but not sufficient condition for schema construction and usage. Students also 



need time to explore the task and benefit from heuristics that guide their explorations in 
productive directions. 
 Third, students were given sufficient time to explore the problems and were given 
the opportunities to revisit the problems that they explored. The students did not instantly 
see the connections between the towers and pizza problems, nor did they see how the 
taxicab problem was related to either of these problems. It is especially noteworthy that 
students initially believed that the towers and pizza problems were similar but also 
differed significantly and that Romina’s initial suggestion to relate the taxicab problem to 
the towers was not immediately pursued. Further, as students revisited problems, their 
representations of the problems became increasingly more sophisticated, enabling them 
to see links between the problem being solved and previous problems on which they 
worked. As Uptegrove (2005) illustrates, many of the connections students made could 
be traced back to problem-solving sessions on which they worked months or years 
before. 
 Finally, as Powell (2003) emphasizes, the heuristics that students used in their 
problem solving enabled them to relate the problem situation to their schema. Among the 
heuristics used by the students were the following: solve a difficult problem by solving 
easier ones (before finding the number of shortest routes to a location ten blocks away, 
find the number of shortest routes to a location two blocks away), generate data and look 
for patterns, and see if there is an analogy between this problem and a familiar one. 
Without the use of these heuristics, the links to existing schema may not have been made. 
However, the disposition to use such heuristics was likely developed during the students’ 
years of solving challenging problems (cf., Powell, 2003; Uptegrove, 2005). 
 Most research on schema construction has been done using traditional 
psychological paradigms, investing how and (more often) to what extent individuals can 
construct and apply schema in a short period of time. Our research differed from this 
paradigm significantly, looking at how students developed schema over time while 
solving challenging problems. We believe this change in perspective radically altered the 
nature of our findings. If our students were given straightforward problems, they would 
not have had the need to develop the useful representations for these problems that were 
critical for their schema construction. If they were only given a short period of time to 
explore these problems, the schema also would likely not have been constructed. In fact, 
students initially did not see the deep connections between the various problems on 
which they worked. Looking at the processes that individuals use to form and use schema 
in relatively short periods of time is looking at only a subset of the processes used in this 
regard. We believe that studying the way that students solve challenging problems 
provides a more comprehensive and useful look at how students can construct and use 
problem-solving schema. 
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