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Introduction 
In this paper we report on the mathematical activity of a group of five high school 

students (15 – 16  year olds) working on a probability problem, in the context of a longitudinal 

research involving Rutgers University researchers and students from the Kenilworth schools in New 

Jersey, USA. The longitudinal study was an after-school program with no time constraints and no 

grades were assigned. The students worked collaboratively on challenging mathematics problems as 

a research context for the development of particular mathematical ideas and ways of reasoning in 

areas of algebra, combinatorics and probability .A more comprehensive description of the 

longitudinal study is available elsewhere (Maher, 2002; Kiczek, 2000; Maher & Martino, 1996). 

Our purpose for this paper is to describe the challenge that the problem posed to the students and 

extract implications for mathematical learning. In the context of the ICMI 16 study, we examine the 

question regarding what research using challenging problems can tell us about the teaching and 

learning of mathematics.  

 Theoretical Framework  
This paper contributes insights on to how a challenge helps promote mathematical learning 

in problem solving. There has been extensive research on how problem solving is related to mathe-

matical thinking (Verschaeffel, 1997; Greer, 1997). However, there has been no “coherent explana-

tory frame” as to how problem solving and mathematical thinking fit together (Schoenfeld, 1992). 

This study seeks to address this issue in a case involving a well-defined open-ended challenging 

problem in probability. Our perspective is that challenges stimulate mathematical reasoning and the 

latter is a driving force in promoting mathematical learning based on sense making.  

Problem solving has been associated with different meanings, which reflect different views 

about mathematics and mathematical learning. Schoenfeld (1992) reports three uses of problem 

solving in mathematics classrooms. In one, problem solving is the act of solving problems as a 

means to facilitate the achievement of other curricular goals, such as teaching mathematics, 

motivation, recreation, and developing and practicing mathematics skills. In another, problem 

solving is a goal in itself, out of many, of the instructional process. It is a skill or piece of 

knowledge that is worth teaching in its own right. Finally, problem solving can be viewed as a form 

of art, as what mathematics is ultimately all about, when challenging problems are involved. Our 

problem solving perspective arises from an extensive body of experience that comes from both 
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longitudinal and cross-sectional research on how learners build mathematical meaning. In 

particular, it recognizes the learners’ ability to construct their own personal knowledge in condi-

tions, where they explore patterns, make conjectures, test hypotheses, reflect on extensions and 

applications of learned concepts, explain and justify their reasoning and work collaboratively 

(Maher, 1988). This view brings together problem solving and the mathematical process by which 

thoughtful learning takes place. This paper addresses the question what research that uses 

challenging problems can tell us about the teaching and learning.

 

Method 
 

The longitudinal study made possible a large collection of data in the form of videotapes of 

students’ problem-solving activities, transcripts of such videotapes, observation notes, and copies of 

students’ written work. The data for this paper consists of a 2-hour videodata showing five students 

working on the World Series Problem: 

In a World Series two teams play each other in at least four and at most seven games. The 
first team to win four games is the winner of the World Series. Assuming that the teams are 
equally matched, and there are not ties, what is the probability that the World Series will be 
won: a) in four games b) in five games c) in six games d) in seven games? 
 

The four male and one female student are known in this research as Romina, Mike, Jeff, 

Brian and Ankur. All of them participated continuously in the Longitudinal Study since its 

inception in first grade, 1989. They worked on the World Series Problem in the 12th year of the 

longitudinal study. Data analysis followed an emerging methodology for the analysis of 

mathematical reasoning using videodata of students working on mathematical tasks (Powell, 

Francisco & Maher, 2003). In this study, it involved identifying and characterizing three critical or 

significant episodes of the students’ work on the World Series Problem. The episodes became the 

units of analysis of this paper. They were chosen for the challenge they posed to the students’ 

mathematical activity and the potential insights regarding mathematical learning. The episodes are 

described in the next section.  The following section discusses the implications for learning and 

teaching from the episodes.  

 

Three Challenging episodes 
 
Episode One: Searching for a strategy 

This episode occurred early in the problem-solving session. It refers to the students’ 

collaborative work in searching for a strategy for solving the World Series Problem. We describe 
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three instances of the students’ mathematical activity. In the first instance, Romina suggested a 

solution to the first question in the World Series Problem. She claimed that the probability of the 

series ending in four games [P(4)] was one-half because of the two ways in which it could be won 

in four games, AAAA and BBBB, respectively. However, Jeff challenged the idea by arguing that 

winning the series in four games is [intuitively] “hardest”. The students subsequently dropped the 

idea: 

ROMINA:  They can go all seven or they could go all four. So, it     
   would be A, A, A, A and B, B, B, B -Team A and Team B? 

ROMINA:  So, in four games, would it be, like, one-half of a chance?    
   Or would we have to write it out with -- using all seven? 

JEFF:  See, I think that it’s the hardest to win it in four games. 

JEFF:  Definitely the hardest. 

ROMINA:  Yeah, exactly. 

JEFF:  So, it wouldn’t be one-half. 

In the second instance Brian suggested multiplying the odds [sic probability] of a team 

winning a game. More specifically, he suggested multiply 1/2 [the probability of either of the 

equally matched teams winning a game] four, five, six and seven times to obtain P(4), P(5), P(6), 

and P(7), respectively. However, as the students used it to compute the probabilities, Romina 

pointed out that the probabilities were getting smaller. The students immediately abandoned the 

strategy:  

BRIAN:   So, it’s like, half times a half – no, wait – remember the     
   odds get harder to win two in a row, like a coin flip?   

ROMINA:  Yeah, that’s how you do it: a half times a half times a half times a half. 

ROMINA:  Four – hold on – four times –  

BRIAN:  That’s sixteen. 

ROMINA:  Oh, never mind, I get it.  Now, would you have, for five     
   games, like, would it be like that [1/2*1/2*1/2*1/2*1/2]? 

ANKUR:  Hopefully, the odds of winning are –  

JEFF:  We’re never going to get – it’s never gonna equal up to one, though. 

BRIAN:  Does it have to? 

ROMINA:  [Looks at her paper] Wouldn’t you have easier odds of     
   winning in six games than in four? 

JEFF:  Yeah. 

ROMINA:  Doesn’t it get less, though? 

JEFF:  That’s why it’s wrong. 
In the third and final instance Mike intervened and explained his reasoning. However, when Ankur 

and Jeff pointed out that it suggested that P(4)=1 or 100%, the students no longer pursued the idea:  
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MIKE: Okay, that’s good enough. There’s gotta be a different way of, um, of looking at it, 
then, ‘cause if you just say, multiply the probability in four games and seven games, 
it’d be –  

ROMINA:  It’s gonna be too – it’s too small.   

MIKE:  It’s gonna be harder in seven, but actually, it’s really not 

BRIAN:  ‘Cause you’ve got more chances.   

ANKUR:  Yeah, ‘cause you could win one, lose one. 

ANKUR:  You could win three and lose three. 

MIKE: Then you go like this. You have – with the four games, you have a maximum of four 
and you have to win four, so it’s like you have to be a hundred percent a winner. And, 
with seven games, you have seven possible, all you have to do is win in four. So you 
got a four out of seven chance of–  

JEFF:  But then, so then – 

ANKUR:  But what’s the overall probability? 

JEFF:  But then, what’s the probability of winning four games, if that’s the case? 

MIKE:  I don’t know. 

JEFF:  You can’t say a hundred percent. 

MIKE:  Yeah. 
The students eventually decided to solve the problem by using the notion of probability as a 

ratio. They listed by “brute force” the series winning game combinations for the value of the 

numerator in the probability ratio. However, computing the denominator posed another challenge, 

which is described below. The key aspect of this episode is how the students continuously proposed 

and critically evaluated each other’s ideas.  

Episode Two: Determining the sample space 

This episode focuses on the students’ discussion on determining the sample space for the 

World Series Problem in the context of probability as a ratio. Early in the problem-solving session, 

Romina suggested that the denominator for P(4) would be 7, which is the maximum number of 

games before a series ends. Ankur and Jeff disagreed: 

JEFF:  All right. So after the four, for winning in four games –  

ROMINA:  Should it be over seven, though? 

MIKE:  It should be over – over seven, ‘cause it’s four out of seven games. 

ANKUR:  But this one wouldn’t be over seven. 

JEFF:  It wouldn’t be. 

ANKUR:  It wouldn’t.  None of this would be over seven. 
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In particular Ankur explained that they could compute the denominator of P(4) as a power of 

two, or  . The students decided to use the idea. However, as they tried to compute P(5),  

Romina asked if the sample space would be or  

1624 =
52 72 :

ROMINA:  Wouldn’t it be two to the fifth?  Or would it be two to the seventh? 

JEFF: Two to the seventh is a hundred twenty-eight.  And, but,  like B, B, B, B, B – like B 
seven times wouldn’t count.  But on the other hand, the sum – 

ROMINA: But, I’m saying for this one, it’s eight over – would it be  eight over two to the seventh 
or two to the fifth? Maybe to the fifth? Well, because – 

Ankur repeated his idea computing the denominator as a power of two. The students used it 

to obtain the remaining probabilities. However, the issue about the sample space still came up, 

although in different context. The students found it difficult and time consuming to list all winning 

game combinations for P(7). Jeff suggested a “short cut.” The students would obtain the number of 

winning game combinations for P(7) by subtracting from 128 [Sample space computed as 27] the 

numbers 2, 8 and 20, the number of winning game combinations for P(4), P(5), and P(6), 

respectively. However, the students abandoned the idea, after Jeff could not find the total out of 

which to consider the result:  

JEFF: You have twenty-eight here, so you’d subtract two because of the four games. There’s 
two that would cancel out, like –  

ANKUR:  What do you mean? 

JEFF:  And then –  

ANKUR:  You’d subtract eight. 

JEFF:  Eight. Ten – no, then eight, twenty –  

ANKUR:  Twenty. 

BRIAN:  Those aren’t the best [inaudible]. 

JEFF:  Thirteen. 

BRIAN:  They can’t be factors in the seventh game. 

ANKUR:  That’s what I’m thinking. 

JEFF:  Well that’s why they’re not – that’s why you subtract them. 

ANKUR:  That’s why you subtract them. Yeah. 

JEFF:   But then you get like a number like ninety-six. 

BRIAN:  Out of what? One twenty-eight? 

ANKUR:  Out of what?  

JEFF:  I’m not sure. 

The key aspect of this episode is that the students’ work to determine the sample space permeated the 

entire session, as they attempted to make sense of competing answers for the sample space. 
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Episode Three: Justification and reflection 

The students eventually came up with the following answers for the problem: P(4)= 16
2 , 

P(5)= 32
8 , P(5)= 64

20 , and P(7)= 128
40 . They listed the winning game combinations [for the numerator of 

the probability ratio] and computed the denominators as powers of two. However, when they 

explained the solution to the researchers, they acknowledged that they lacked “mathematical 

backing” for their answers.  

JEFF:  That was the first one, so for the first one, it’s two sixteenths. All right, for the next  
one, we’re going to do the same situation, but this will be two to the fifth, so it’s 
gonna be out of thirty-two, and thirty-two is the bottom number. And then for – I 
think, for these we were just kind of – we went through ‘em. We were – that’s why 
there’s  strings of A’s and B’s on everyone’s paper.  And in order to get these, we 
went through all the possibilities where there was only – there was five, five different, 
five places, and A or B was in four of them. And we went through all of them and 
that’s how we got that.  And then we ended up with, um, eight of thirty-two for that. 
Now, that’s not too convincing ‘cause we just went through ‘em, but we went through 
all the ones that were out of five with four A’s and so we got that. I don’t think we 
have a really concrete mathematical backing for that. . 

 
This situation opened up a new challenge for the students. They had to come up with a 

convincing argument that they had listed all possible game winning combinations for P(7).  They 

brought in their experience with Pascal’s Triangle. Mike explained that he had noticed that the 

number of favourable outcomes that they had listed for the probabilities of the series ending in four, 

five, six and seven were the same as the numbers in the Pascal’s Triangle as indicated below: 

 

1 
1          1 

1 2 1 
 1        3   3       (1) 

1 4 6 (4) 1 
 1         5  10  (10)   5         1 

  1           6       15   (20)     15      6       1 
MIKE:  All right, um, I just found, like, if you take the fourth number in each one [circles 

these entries]-- that way, if you double each number, ‘cause you have two teams, you 
can get the possibilities of four games. Four games, um, equals  two, right? You got 
eight, twenty and forty, like they said. 

However, Mike was not sure how to explain the connection:  
 

MIKE: Three of them that have two and one of them will have three. Um, now when you go 
to the next step, those, uh, that last – those last – those three games that they won – 
The first three games, if they win that, that’ll be like, those three possibilities without 
– would be – if they win the next game or those three – if they win – Uh, I don’t know 
how to explain it. Uh, on the third game – I don’t know.  I – I have trouble explaining 
things. I don’t even know what I’m trying to do now. 
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The students discussed the issue for a relatively long period of time. Eventually, Ankur 

provided the closest argument for a justification of the students’ answers using Pascal’s Triangle: 

ANKUR: Actually, I was going to say, like, that one represents the, like, winning three games in 
a row, or like three A’s. 

MIKE:  That’s the probability. 

ANKUR: And then, if you go to the right, that’s like getting another A, and there’s only one 
way to get four A’s.  If you go to the left that’s like getting a B, and that’s like three 
A’s and a B, and there’s four different ways you can write that. 

The key aspects of this episode are the students’ acknowledgment that they had no 

justification for their answers, the connections between the problems and the students’ collaborative 

work to come up with come up with a justification for their answers. 

 
Insights on mathematical learning 

 
One insight is that the nature of students’ collaborative work can be a source of 

mathematical challenge and ways to overcome it. In the World Series, the students constantly 

suggested, listened to, and critically evaluated each other’s ideas. New challenges and suggested 

solutions or strategies emerged from the students’ collaborative work, which helped them make 

progress in solving the problem. In Episode One, it helped them generate a number of ideas from 

which they chose the strategy that they used to solve the problem. It also helped them control for 

variables when listing winning game combinations. In Episode Two, it led to a refinement of the 

students’ strategy for finding the denominator of the probability ratio as powers of two. In Episode 

Three, it allowed the group to eventually provide an explanation of Mike’s insights on the 

relationship between The Word Series Problem and Pascal’s Triangle. 

Another insight is that complex mathematical relationships or tasks are not the only sources 

of challenges when it comes to promoting mathematical reasoning. Basic or fundamental concepts, 

such as probability and, more specifically, sample space, can also be cognitively challenging and 

engaging to the students. This follows the claim in Episode Two that the students’ attempts to 

determine the value of the denominator in the probability ratio permeated the entire session on the 

World Series Problem. An analysis of the students’ attempts suggests that the challenge for the 

students was to determine the type of elements of the sample space, not so much how many such 

elements were in the sample. This suggests the insight that challenge in probability is not only 

about how to count the elements of a sample space. It is also about what to count.  

Episode Three gives another insight on the relation between challenge and learning. The students 

acknowledged that they did not have a “mathematical backing” for their answers to the World 

Series Problem and eventually examined the connection between the problem and Pascal’s 
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Triangle. This suggests that challenge can motivate students to pursue other potentially complex 

challenges, which can result in the building of more powerful knowledge.  

Conclusion 
This paper examines the relation between challenge and mathematical learning in problem 

solving. The main argument is that challenge stimulates mathematical reasoning in students, which 

is essential in promoting thoughtful mathematical learning. As the students overcome challenging 

obstacles, they build lasting and more complex forms of understanding. However, the paper study 

also suggests that mathematical tasks are not the only source of challenge. Students’ constant 

evaluations of each other’s ideas and the need to justify answers also provide forms of challenge. 

They suggest a dynamic view of challenge, which evolves in the context of the students’ 

mathematical activity and enhances the development of independent learners.  
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