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Data from a class of Year 9 students solving two extended investigation tasks set in real-world 
contexts are analysed to gauge what they perceived as challenges during the tasks. Some students took 
up expected challenges but for others these did not eventuate as the significance of task requirements 
were missed, or the mathematical implications of results produced during the task which should have 
generated challenge were not realised. At other times unforeseen challenges arose for students who 
discovered different complexities in their unanticipated interpretation of the tasks. 

1. Background 
A challenge for lower secondary mathematics teachers is to design learning experiences to manage the 
level of cognitive demand of tasks to ensure students are challenged, willing to engage with these tasks, 
and learn mathematically from the experience. Recent curriculum documents (e.g., VCAA, 2005) 
advocate students at this level of schooling being given opportunities to “engage in investigative tasks and 
problems set in a wide range of practical, theoretical and historical contexts” (p. 36). Student use of 
electronic technologies is seen as an essential learning at this level “to support analysis in mathematical 
inquiry” (p. 40). As part of an Australian research project1 how project teachers engineer learning 
environments in their classrooms to manage increased cognitive demand of lessons where task contexts 
involve real-world applications and how students negotiate this challenge are being investigated. The 
project involves design-based research (Collins, Joseph, & Bielaczyc, 2004) where iterative cycles of 
design, implementation, evaluation, and refinement are used to improve educational practice. Researchers 
and teachers work collaboratively to test theories in everyday classroom settings. Both theory and practice 
inform the design phases and are informed by what transpires during each teaching experiment. Some 
results from the first two years of the project are reported here.  
2. Managing Cognitive Demand of Extended Investigative Tasks 
For practitioners to value participation in a design-based research project, “practitioners’ issues” should be 
the starting point (Dede, 2004, p. 113). The design and sequencing of extended investigative tasks so the 
cognitive demand matches students’ needs at a particular stage in the development of their mathematical, 
technological, and investigative procedure knowledge are issues of interest to teachers in the project. At 
the beginning of the project it was hypothesised that management of cognitive demand of teaching tasks in 
technology-rich teaching and learning environments is mediated through careful tuning by the teacher of 
the interplay between (a) task scaffolding, (b) task complexity, and (c) complexity of technology use 
(Stillman, Edwards, & Brown, 2004). 
Task scaffolding is the degree of cognitive processing support provided by the task setter enabling task 
solvers to solve complex tasks beyond their capabilities if they depended on their cognitive resources 
alone. Task structure (e.g., carefully sequenced steps or a bald task statement), type of technology chosen 
(e.g., a real world interface tool such as a data logger or a mathematical analysis tool such as a calculator), 
and whether technological assistance rather than by-hand calculation is privileged, all contribute to task 
scaffolding. Whose choice it is to decide all of these also contributes to the level of task scaffolding. The 
complexity of a real world task can be characterised by identifying and assessing the level of those 
attributes of the task that contribute to its overall complexity. These are potentially numerous contributing 
via the mathematical, linguistic, intellectual, representational, conceptual, or contextual complexities of 
the task (Stillman & Galbraith, 2003). For example, one property of conceptual complexity is pedagogical 
development where required concepts can be anywhere along a continuum from early to complete 
development. Overall task complexity also varies along a continuum from simple to complex with the 
latter presenting a challenge for many students. For a particular task, students focus on only a subset of 

 
1 RITEMATHS is a collaborative research project, funded by the Australian Research Council Linkage Scheme, 
involving the Universities of Melbourne and Ballarat, six  schools and Texas Instruments as industry partners. 
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attributes when assessing overall task complexity (Stillman & Galbraith, 2003) but these indicative cues 
contribute to their sense of challenge with the task.  
Use of electronic technologies such as calculators and image digitisers can reduce the cognitive demand of 
tasks through “supplementation” and/or “reorganisation” of human thought (Borba & Villarreal, 2005) by 
carrying out routine arithmetic calculations, algebraic manipulations, or graph sketching; acting as an 
external store of interim results; or overlaying visual images within an interactive coordinate system to 
facilitate analysis. However, these technologies also have potential to influence the complexity of what 
students do as they transform classroom activity and allow new forms of activity to occur. Regulation of 
this complexity is a further opportunity for teachers to mediate cognitive demand, and therefore the 
challenge, of tasks through careful crafting of tasks and management during implementation. In particular, 
use of multiple representations, easily accessible with graphing calculators and tasks amenable to 
electronic technology use, harness opportunities for students to use technology to stimulate higher order 
thinking in investigating real-world situations. Within tasks diagrammatic, numerical, symbolic, graphical, 
and algebraic representations can be intentionally employed to support bridge making from one 
representation to another and to provide opportunities for interpretation across representations as well as 
from each representation back to the situation being investigated. 
As Dede (2004) points out, several projects implementing well-formulated technology-based designs such 
as the SimCalc project (Roschelle, Kaput, & Stroup, 2000) have demonstrated that “typical middle years 
students [are capable of] mastering science and mathematics previously thought appropriate to teach only” 
to students at higher schooling levels (p. 111). However, two challenges middle years students face when 
engaging in extended investigations for the first time (Loh et al., 2001), are inability to recognise when to 
keep records and failure to plan and monitor progress effectively. It is thus prudent for teachers designing 
extended tasks for the lower secondary years, initially at least, to provide timely instructions throughout 
task statements supporting recording of key information, a planned solution, checking and verification of 
results. As student task expertise and familiarity with technology grow, some “fading” of this scaffolding 
(Guzdial, 1994) should occur, particularly that related to task structuring and technological tool selection 
and instructions. This is not to say mathematical analysis tools need be withdrawn. On the contrary, 
“learning to ‘work smart’” in a technology-rich learning environment may involve “learning to establish 
one’s own scaffolds for performance, and fading these may be beside the point” (Pea, 2004, p. 443). 
3. Context for the Study  
One project school is developing a lower secondary mathematics curriculum (Years 8–10) providing 
opportunities for engagement in extended investigation and problem solving tasks set in real-world 
contexts considered meaningful for students by the teachers. A major focus has been in Year 9 (14-15 year 
olds), the first time students at the school are required to have laptop computers and graphing calculators. 
Both are used frequently in mathematics lessons, always being available. During the Year 9 program, in 
keeping with local curriculum requirements (VCAA, 2005, p. 36), students are introduced to a 
mathematical model being used to describe the relationship between variables in a real situation and then 
being used to predict an outcome in terms of a response variable when a control variable is altered. A 
series of extended real-world tasks designed by one teacher, Peter (a pseudonym), and the implementation 
and refinement of these tasks are being studied in depth.  
One problem of design-based research is lack of attention to “scalability and sustainability” (Dede, 2004, 
p. 113). Adoption by other classroom teachers with different motivations for the use of real-world tasks 
and/or electronic technologies in the lower secondary years is not guaranteed even if the design can be 
shown to be “generalisable and transferable”. Some of the tasks from this first school have been modified 
by members of the research team and teachers at another project school where they have been 
implemented to fit the different conditions existing at that school.  
4. The Teaching Experiments 
Teaching experiments related to task implementation occurred in one of Peter’s Year 9 classes in two 
successive years of the project. This paper will deal with two tasks, Cunning Running and Shot on Goal, 
and their implementation in the second year of the project in Peter’s class of 28 Year 9 students (11 male, 
17 female). Data collected during these teaching experiments include task sheets, audio-taped teacher 
interviews and reflections, field notes of lesson observations for task implementations, videotapes of two 
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focus groups for both tasks, audio-taped student interviews (8 and 4, respectively) and written reports 
from students. 
Research questions currently subject to on-going investigation include: 
1. What do students perceive as challenges during the solution of extended investigation tasks set in real-
world contexts? 
2. How can tasks be altered for implementation in different contexts (e.g., shorter time frame and teachers 
and students with less technological expertise) but the level of challenge and engagement retained? 
This paper focuses on the first research question. Analysis of data from the implementation of a shortened 
version of Shot on Goal at the second school collected to address the second research question appears in 
Galbraith and Stillman (2006). 
4.1 Task design considerations 
These tasks follow the investigative cycle proposed by Kader and Perry (1994)—pose a problem, collect 
data, analyse the data, interpret and communicate results. Explicit promotion of multiple representations 
as advocated by Friedlander and Tabach (2001) was to be facilitated by use of electronic technologies in 
teacher demonstrations supporting development of student understanding of a real-world situation and in 
the requirement to produce and interpret multiple representations of the task situation and data produced 
during the investigation both with and without technology. The real-world situations chosen had to be able 
to be mathematised using mathematical techniques studied at Year 9 level and amenable to a level of 
mathematical analysis commensurate with the curriculum requirements for this schooling level. 
In designing such tasks Peter was aware of the need to make trade-off decisions about the competing 
needs of students. There was little point in setting task challenge too high especially in the lower 
secondary years where negative experiences in mathematics have the potential to foster long term negative 
attitudes towards mathematics because “if we are not careful but, some of our projects fatally wound kids 
because they got the first line wrong.” On the other hand, some students are quite capable of producing 
work beyond that expected for the majority of students especially when allowed to use electronic 
technologies. Peter said he had “underestimated for years what these technologies are and I’ve actually 
held them back. So, for some students I think we’ve got to make sure it’s big enough to allow some 
students to run further than we actually envisaged.” Peter saw a further use of “technology might be to 
alleviate … the endless repetitiveness after they’ve engaged in the process of ‘This is what I understand 
the process to be’”. Above all, he was aware he was to create tasks which would engage students and 
develop their expertise as learners “who love learning and who know how to find things out for 
themselves” (Collins, Joseph, & Bielaczyc, 2004, p. 18). So, decisions about the level of task scaffolding 
provided in task sheets and on an individual basis by peers and teacher are critical, as too are decisions 
about when and to what extent that scaffolding should fade as the year progresses. For Peter, “the 
engagement process is: ‘Yes I’m confident enough to present this to you, not as a total solution but as a 
representation of what I know’” and this occurs in a collaborative learning environment. When asked what 
images came to mind when he thought of engagement in the context of a mathematics class he said: 

Peter:  Two students in dialogue, I've got a visual picture, it's on my wall of two students with a graphics 
calculator in hand looking down at the calculator, just punching numbers and discussing it between them 
and I'm no longer needed to scaffold. I can move out. I can move to another group so the engagement is 
that their knowledge is important, saying, "What do I need next?" Engagement to me is that the task of 
my expertness has moved out. I've facilitated the change. I can move out to the side, come back and ask 
questions.  

4.2. The Tasks 
The first task for the first 2 years of the project was Cunning Running (Figure 1) which came at the end of 
the first unit for the year on Pythagoras’ Theorem. It served as both the culmination of this unit and the 
transition into a later unit on trigonometry. During the teaching of Pythagoras’ Theorem an investigation 
into the patterns and algebra of square numbers was used on several occasions. Learning experiences 
included a first introduction to operations on graphing calculator LISTs. Also, as part of this investigation, 
students worked as a class through the solution of the task, Elma’s Poster, where they had to investigate 
the area and dimensions of various sized square posters that could be hung in a square shop window when 
restricted to hanging the poster by its corners from existing hooks placed at a regular fixed interval around 



the window frame. In this task numerical, graphical and algebraic methods were used. Prior to Cunning 
Running, students undertook a test set by Peter of use of Pythagoras’ Theorem in single triangles, a 
rectangle and compound figures to find various lengths. Results for the 40 mark test (M = 36.2, SD = 
2.16) indicated that the class had demonstrated a high level of proficiency in the topic. 

In the Annual College Orienteering event, competitors choose a course that allows them to run the shortest possible 
distance, while visiting a prescribed number of check point stations. At one stage, the runners enter the top gate of a 
field and leave by a bottom gate. To cross the field, they must go to one of the stations on the bottom fence. Runners 
claim a station by reaching there first and remove the ribbon on the station to say it has been used. Other runners 
must go elsewhere. There are 18 stations along the fence line at 10m intervals. The station closest to Corner A is 50 
metres from A. The distances of the gates from the fence with the stations are marked on the diagram.  
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THE TASK 

A 240 mertres
B

Gate 2

Gate 1

18 stations at 10 metre intervals

A runner’s path 
L

F

120m

40m

Investigate the changes in the total path length travelled as a runner goes from gate 1 to gate 2 after visiting one of 
the drink stations. To which station would the runner travel, if they wished to travel the shortest path length? 
For the station on the base line closest to Corner A calculate the total path length for the runner going Gate 1 – 
Station 1 – Gate 2. Draw a scale diagram of the situation and use this to check your hand calculations for the first 
four stations. Use LISTs in your calculator to find the total distance across the field as 18 runners in the event go to 
one of the stations, and plot the points to show how the total distance run changes as you travel to the different 
stations.  
Observe the plot, then answer these questions: Where is the station that has the shortest run total distance? Could a 
19th station be entered into the base line to achieve a smaller total run distance? Where would the position of the 19th 
station be? If you were the sixth runner to reach Gate 1, to which station would you probably need to travel? Use 
your Lists to find the algebraic equation that represents the graph pattern. Draw the graph of this equation on your 
plot of the points. If you could put in a 19th station where would you put the station, and why? 
(Additional suggestions as to how the work might be set out and for intermediate calculations provided some task scaffolding.) 

Figure 1. Major elements of Cunning Running Task 

The lengthy task statement posed potential problems with linguistic complexity. For the implementation in 
the first project year, Peter mediated these problems through class discussion and connections with visual 
mental images from a precursor gym activity. For the second implementation he used an introductory 
dynamic geometry demonstration and a classroom demonstration instead as this eliminated the need for 
extra lessons and having to coordinate scheduling of the task with availability of the gym. After the 
introductory lesson, students worked on the task in groups usually of 3 or 4 for a double lesson (2 × 50 
minutes). Students were then allowed more time to work on the task at home before handing it in. 
The second task, Shot on Goal (see Figure 2), came two months after the first which was undertaken in the 
fourth week of the school year. Students had now completed a unit on the trigonometry of right angle 
triangles. Four class lessons over one week were allowed for the task. It was handed up at the end of the 
last lesson so students had no time to complete and polish their reports as they had with Cunning Running 
as they were about to go on school camp. Peter selected hockey for the task context as he considered it to 
be more inclusive in a co-educational school and some class members played hockey. Some caveats apply 
to this decision. Firstly, a goal in hockey is only allowed from a point within the penalty area, so only 
some of the run lines are feasible. This aspect can be included at a later stage by first finding the location 
of the best shooting position in terms of angle as is required by the question, and then checking its position 
relative to the penalty area. (With soccer there are no such restrictions.) 



Many ball games have the task of putting a ball between goal posts. The shot on the goal has only a narrow angle in 
which to travel if it is to score a goal. In field hockey or soccer when a player is running along a particular line (a run 
line parallel to the side line) the angle appears to change with the distance from the goal line. At what point on the 
run line, has the attacking player opened up the goal to maximise the possibility of scoring the goal?  
Assume you are not running in the GOAL-to-GOAL corridor. Find the position for the maximum goal opening if the 
run line is a given distance from the side line As the run line moves closer or further from the side line, how does the 
location of the position for the widest view of the goal change? 

Figure 2 Major elements of Shot on Goal Task 

5. Student Perception of Challenges 
All but two of the 10 students interviewed unequivocally stated they liked doing tasks like Cunning 
Running or Shot on Goal with Sandra saying she found “them challenging and once I've done them I find 
it like rewarding.” She saw the purpose of the tasks as making her think. Leo liked them “more than doing 
the textbook work” as the tasks engaged his interest. Similarly, Pat liked “doing tricky things and learning 
how to do difficult things and the rules. Writing out what they mean.” The latter refers to what engaged 
and challenged him the most—the development of an algebraic model for the situation. Val, on the other 
hand, did not “like it when I am doing it but when I get it, when I understand it, I am all happy in myself. 
Just because, I don’t know, usually it is when I finish and I look back and actually see that I could do it!” 
Cunning Running required students to vary distances with the purpose of minimising the total distance 
run, while Shot on Goal involved looking at varying angles to maximise the shot angle. Surface 
similarities tend to obscure different levels of complexity in the respective formulations and thus different 
levels of challenge in the tasks at different points in the solutions. Similarities in the tasks were noted by 
Sandra and her comparison of the level of task challenge echoed that of the other students interviewed. 

Sandra:  I found them pretty similar because you had triangles and stuff. Yeah. 
I:  But what about difficulty and challenge was it similar, the experience of it? 
Sandra:  I found this one [Shot on Goal] more simple because the first one [Cunning Running] you had to [work 

out the equation], yeah. I found it a bit difficult. 
The cognitive demand of the two tasks as a whole is similar; however, the level varies throughout the task 
solutions. In Cunning Running there is a moderately high level of cognitive demand required throughout 
but this rises substantially, for students in the early stages of their algebraic development, when translation 
from symbolic LIST formulae to algebraic formulation is required. At points where cognitive demand 
rises students can experience a sense of challenge. In Shot on Goal, at two junctures in the formulation 
stage cognitive demand is high. Both give Year 9 students a sense of challenge. The cognitive demand 
then falls for much of the remainder of the task rising again moderately when an algebraic formulation is 
required. Producing such an equation is much less challenging than in Cunning Running. 
5.1 Taking up challenges 
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The greatest challenge in Cunning Running was formulating a two variable algebraic model with only 2 of 
the 27 students who attempted the task doing this successfully but these were early days in their study of 
algebraic equations. For most of the double lesson observed by the researchers, Sandra worked firstly on 
developing her equation and then on using her graphing calculator to verify it. The other student, Ken, had 
completed the task at home. A third student, Ben, described the challenging process of concatenating 
LIST formulae to produce such an equation as, “putting them together and then kind of simplifying it so 
they worked because it is pretty well what it is, just all the LISTs.” Unfortunately, Ben’s simplification 
process was flawed, although he did produce an equation in two variables. Mei, who worked in class with 
Sandra but had not begun her equation by the time the class ended, produced what to her was a one 
variable expression for total distance 

    
40 2 + x( ) + 120 2 + x( )  as only one station was involved at any time 

when her expression was evaluated. She did not see this conflicting with the x being the distance from the 
station to corner A in one part of the formula and from corner B in the other part. She also did not find the 
task challenging but admitted “the actual algebra bit, the equation to try and get the equation for the actual 
graph was really hard.” The remainder of the task she felt was at an easier but similar level of difficulty 
but time consuming. Only Sandra was able to verify her equation was correct by using the function 
window of her calculator to draw a graph through the scatter plot of points from her LIST data (Figure 3). 
She made several attempts and her delight was obvious when finally the function went through the points. 



Mei:  You are close. 
Sandra:  Yes, but why does the line go down the side? 
Mei:  I am not sure. 
Sandra:  Maybe you need brackets. You may need brackets before that. There. [Talking to herself and working 

on her algebraic model in Y=.] Brackets. And then have a bracket right at the end. 
Mei:  Maybe? [pause] Damn! 
Sandra:  Wait, it is still going [referring to the calculator]. Nuh. 
Mei:  Awh, oh my god. Too hard! 
Sandra:   [She picks up the calculator and looks closely at the graph.] Where is the line? Ohh! There! 
Mei:  So it does work!  

     
Figure 3. Sandra’s verification of her algebraic equation 

5.2 Avoiding challenges 
Expected challenges built into the task by the task setter often did not eventuate for students who missed 
the significance of particular task requirements. In Cunning Running, for example, several students did not 
perceive this affordance of the calculator to enact verification even though class discussion highlighted it. 
Some thought the question was superfluous, stating “the graph will be the same”, as they had used a 
joined scatter plot on a spreadsheet chart or in a by-hand graph. However, Ben, who missed the 
significance and therefore the challenge of this verification method, perceived an alternative was to 
substitute into his model on the home screen. Gary emphatically said he liked challenging tasks but 
thought Cunning Running was not challenging at all as he underestimated the mathematical depth required 
for an appropriate solution. For his algebraic model Gary wrote: total run distance 

    
= h 2 + i2( ) + j2 + l2( )  

with these variables labelled on his scale diagram. This model was similar to the model derived as a class 
for Elma’s Poster which he recognised was similar. Other students also did not take up the challenge of 
the algebraic formulation using the same variable labels as used in Elma’s Poster and their equation was at 
an even lower level (e.g., 

    
S 2 + M 2 = H 2( ) + S 2 + M 2 = H 2( ) =  answer). 

Interpretive aspects of tasks presented challenges for some. In Cunning Running determining where to 
place a 19th station if it could be placed anywhere was a challenge requiring students to perceive previous 
constraints could be relaxed, such as discontinuing the ordered pattern (i.e., 19th must follow 18th) and 
the requirement for a 10m distance between stations. Many simply placed an extra station 10m from either 
the first or last stations. Some, however, searched for a shorter distance but Gary placed his 19th station so 
the total running distance was the same as for the shortest station as “a good race is a close race so … if 
you have the first two runners going to the same station round about it is going to be a closer race.” 
5.3 Challenges in the real world to mathematical problem specification 
In Shot on Goal, the cognitive demand required for task specification was high potentially leading to a 
blockage in this early solution phase if students found the level of challenge too high to engage with the 
task. Initially, students had to establish the aim of the task and specify this in terms of a mathematical 
problem. Ann, for example, saw the aim as “to find out where the best spot on the field is to take a shot on 
goal”. “Best spot” was then translated to mean where the “widest angle” was. However, there was still the 
dilemma of which angle this was. Peter anticipated specifying the aim of the task and the angle involved 
would be challenging. He provided a supporting physical demonstration in the classroom which students 
either participated in or watched. A tennis ball was thrown through two goal posts from various angles. 

Sandra: Yeah, uh, it helped to explain like what we hoped to find out. Like I didn't really get what we were 
trying to do. And that kind of explained what angles we were trying to find.  

This was followed by a debate about which angle was the focus by students using diagrams on the front 
whiteboard. Several boys thought it was various angles made by the ball at the goal mouth as it entered the 

oal whilst Amy thought it was the angle from the spot where the ball was kicked (Figure 4). g
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Pat’s angle  

 
Amy’s angle 

 

Figure 4. Students’ diagrams of possible shot angles and their aims for the task. 
5.4 Challenge of the geometrical formulation 
Once the desired angle was known in Shot on Goal, a second challenge came when students had to work 
out how they might find this angle geometrically in order to apply formulae to carry out their calculations. 
The latter was considered far less difficult, if not routine. 

I:  How difficult was it to decide which hand calculations you had to do? 
Sandra: I found it pretty easy. I thought about it at home. Once I figured it out, I found it pretty simple. 
I:  How did you know it was an inverse tan? 
Sandra: Well, we had been doing it in class just before and we had the side, we had to find out the size of the 

angle and we had the length, sides and yeah. 
Finding the angle involved a decomposition of the angles from the shot spot on the runline to the near and 
far goal posts into component parts. Most students subtracted the angles from the shot spot, that is, ∠BPD - 
∠BPC in Di’s diagram (Figure 5a). Sandra, however, who had worked on this before the class discussion, 
described her method to resolve this second challenge as finding “the extra two”. “I did it the other way of 
finding two different triangles and then taking them away from the other”. She saw the task as partitioning 
the rectangle made by the run line, goal line, and line segments parallel to these (Figure 5b) into three 
triangles, two containing the extra parts of the angle which would not result in a successful shot. These 
extra angles were then added together and subtracted from 90° to find the shot angle. 
 

  
Figure 5 a) Di’s diagram and b) Sandra’s diagram to find the shot angle. 

5.5 Challenges arising from discovered complexities 
Other challenges arose for individual students as they discovered different complexities in the task or their 
interpretation of the task. Mathematising the run line introduced an unexpected challenge for Ben and 
Ken. The class viewed a Power Point which included two demonstrations of the view of the goal as a 
player approached on a run line parallel to the side line. Interviewed students found the more dynamic of 
these helpful in clarifying their thoughts. However, Ben and Ken faced an unanticipated challenge with 
the transition to a mathematical problem. Instead of advancing down their specified run line in 1 m 
intervals, they took a stepped trajectory towards the goal.  
Expected challenges built into the task by the task setter often did not eventuate for students who missed 
the subtleties of the implications of generated interim results. Leo’s calculated interim results for Shot on 
Goal were not flawed but contrary to what he expected causing him some concern and he had to ask for 
help to resolve this further challenge. He expected the angle of the shot to increase as the player moved 
along the run line (Figure 6). Not only was this not the case for his allocated run line of 10 m from the side 
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line, but two of his results were identical. This conflicted with his conception of the situation. After 
checking his results several times, he sought help from his group. Ascertaining that no others in the group 
had any identical values, Pat assured Leo his results must be in error but Leo was certain his calculations 
were correct. Only after viewing a physical demonstration involving string lines was he finally convinced 
his results were sensible. The same set of results did not provide a challenge for Cate, allocated the same 
distance for her run line, as she missed the implications claiming: “I thought the angle would increase as 
you get further from the Goal Line. The calculation has confirmed my initial beliefs.” 

 

 

 
 

Figure 6. Leo’s challenge 

6. Conclusion 
Designing extended real-world investigative tasks that present manageable and engaging challenges for 
lower secondary students is not without challenges. Despite thoughtful considerations by the teacher in 
both designing the tasks and providing timely task scaffolding at points during task implementation when 
students were expected to be challenged by the cognitive demand of tasks, there are always differences 
between the expected student moves and challenges and what transpires. Some students take up the 
challenges as expected but for others these same challenges do not eventuate as the significance of 
particular requirements of the tasks is missed, or the mathematical implications of results produced during 
the task which should generate challenge are not realised. At other times unforeseen challenges arise for 
individual students as they discover different complexities in their unanticipated interpretation of tasks. 
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