PROBLEM PROPOSING AND MATHEMATICAL CREATIVITY

(Reprinted from Crux Mathematicorum, Vol 12, No 10, Dec 1986)

M.S. Klamkin
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Mathematical Olympiads 1979-1985 and Forty

Supplementary Problems”.

There are very many mathematical competitions, at many levels, being given around
the world each year. For a treatment of a number of these, see the Proceedings of the
congress ICME 5 and the bibliography in [1]. As a consequence of these very many
competitions, there have been quite a number of duplications of the problems, either
inadvertently or in some cases by direct copying. Also, many contest problems have
appeared previously in well known books and journals. Since these competitions have
apparently become increasingly more important, there are training sessions which
help prepare for a number of them. In view of all this, competition examination
committees now have to be much more vigilant than ever before in setting their
competitions. They must now continually keep abreast of problems set in other
competitions. They have to be very careful about duplicating problems from books
and journal problem sections. Even if the book or journal used is not too well known,
the problems used could have already been duplicated in other books and journals that
are well known. To play safe, problems should either be new or else based on some
nice result from some non-recent mathematical paper. This brings us back to the
theme of this congress session, "How does one create new problems?"

In almost all my previous papers concerned with problem solving and proposing, I
have highly recommended the following five books of George Polya. To me they are
still the best books around dealing with the subject.

How to Solve It, Doubleday, New York, 1957.

Mathematical Discovery, Vol. I, Wiley, New York, 1962.

Mathematical Discovery, Vol II, Wiley, New York, 1965.

Induction and Analogy in Mathematics, Princeton University Press, Princeton, 1954,
Patterns of Plausible Inference, Princeton University Press, Princeton, 1954.

In this paper, I will be concerned with the creative aspects of problem solving and
proposing. Although the psychological aspects of creativity in mathematics are
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important, I will dwell mostly on the mathematical aspects. This is mainly due to the
fact that I do not know much about the psychological aspects.

In solving or creating problems it is certainly quite helpful to have a good memory
and to be observant. George Polya makes the analogy of finding a precious uncut
stone on the shore and tossing it away since it is not recognized as being valuable. One
has to do a certain amount of cutting and polishing before the value of the stone is
recognized, although an expert usually can get away with just a careful examination.
So in regard to a problem which has just been solved or whose solution has been
looked up, we should not immediately pass on to something else. Rather, we should
"stand back" and re-examine the problem in light of its solution and ask ourselves
whether or not the solution really gets to the "heart” of the problem. Mathematically,
one of the points being made here is to check whether or not the hypotheses of the
problem are necessary for the result. (That the hypotheses are sufficient follows from
the validity of the result). Additionally, although our solution may be valid, there
may be and usually are better ways of looking at the problem which make the result
and the proof more transparent and can as well lead to extensions. Consequently, it
should be easier to understand the result and the proof as well as to give a non-trivial
extension. I will illustrate these remarks by considering a number of elementary
mathematical results and will show how, by careful re-examination, one can be led to
more general results, some of which are considerably more sophisticated. How well
one will succeed in this process will of course depend on one's powers of observation,
knowledge, memory, and persistence, in addition to any natural creative ability.

1. Chords and Diagonals

For the first illustration, let us consider the intuitive and known result that the largest
chord of a circle is a diameter. One simple proof follows by connecting the end points
A, B of the chord to the center O of the circle and using the triangle inequality:

AB < AO + BO = diameter.

1.1 Usually, many students and teachers do not bother with the proof, and those that
do usually pass on quickly to something else since the proof is so simple. However, as
mentioned previously, let us "stand back" and examine the result in light of its proof.
One of the questions to ask ourselves is "are all the properties of the circle necessary
for this result?”
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One possibility for a generalization is to
enlarge the class of figures from circles

to those which are centrosymmetric.
Again it is intuitive (but perhaps not as
much as before) that the largest chord 4
must contain the center. The following
proof is just a slight modification of the
previous one. Referring to the figure,

we see that

AB < AO + BO < 2max {AOQ, BO} =max {AA’, BB’}

It is to be noted that this last result is valid for any centrosymmetric set of points in
any dimension. Basically, what has been proved is that the longest chord of a
parallelogram is the longest diagonal.

1.2 Again there may be a temptation to either rest or pass on to something else. But
let us be persistent and see if we cannot extend the last result. Naturally, how we
succeed here is a function of our persistence, our knowledge, our experience, etc.
Usually, there will be many false starts and lots of wasted paper, but that is all part of
the process.

The parallelogram idea leads one to consider the analogous problem of determining
the longest chord of a polygon or even a polytope in any dimension. We will show
that the endpoints of the longest chord are two of the vertices of the polygon or
polytope. This is also a known result. A geometric proof for polygons is given by
Rademacher and Toeplitz [2] and a vector proof for polytopes is given in [3]. For
completeness here, we give the vector proof.

We need only consider convex polytopes. For if the result is valid for the convex hull
of an arbitrary polytope, it is also valid for the polytope.

Let vy, Vs ..., v, denote vectors from a common origin to the vertices of the
polytope. Then

- -
1V and 7V =X w; V;

~
~.

where w;w; 2 0 and Zw] = ZIw; = 1, will denote two vectors from the
common origin to two points within or on the boundary of the polytope. Using the
triangle inequality repeatedly and the properties of w}. and w;, we

get the following sequence of inequalities:

17 - 7= 12w V;-7) < §w;|(7i- 7)| € Max|7;- 7|
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1.3 At this stage, we may again be tempted to pass on to something else. However,
we will still persist in looking for other extensions. Here is where a knowledge base
and memory comes in. After a while, triggered off by the above results, I
remembered the result that for any convex quadrilateral there is a least one side which
is smaller than the greater of the diagonals of the quadrilateral [4]. Then after playing
around (experimenting), I conjectured that for any convex
n-gon, there are at least n - 2 sides which are shorter than the longest diagonal, and
furthermore, n - 2 is best possible. After more playing around, I came up with the
following proof. For simplicity, I illustrate the proof for a hexagon; however, the
proof carries through for an n-gon.

Our proof is indirect. We assume that there are at least three sides of the hexagon
which are greater than or equal to the longest diagonal. Labelling these three sides as
a, b, ¢ we have the following possible configurations:

A B

E D

The "worst" configuration for our proof will be the first one. Since in a triangle the

greatest angle is opposite the greatest side, we have: in AABC, ZB < g—; in

ABCD, Z/C < % ; in ACDE, /D < 3; in ADEF, /E < m; in AEFA,
ZF < m; andin AFAB, ZA < % This leads to a contradiction since the sum of
the interior angles of an n-gon is (n -2) . For the other two configurations, the sum

of the interior angles would be bounded by a number even smaller than 1;_1: The next
figure shows that n - 2 is best possible (for r = 6).
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T
ZBAF< 3 , AB=AF

No doubt a person with more persistence, knowledge and creativity can find further
extensions of the previous results. The subsequent illustrations will be treated in a less
extended way.

2. Equilateral and Equiangular Polygons [5].

It is a well known elementary result that all equilateral triangles are equiangular and,
conversely, that all equiangular triangles are equilateral. One simple proof follows
by considering the equilateral or equiangular triangle to be congruent to itself in
different ways. Since the proof is nice and simple and the result does not extend to
polygons, we usually pass on to something else. Note that a rhombus need not be a
square and a rectangle need not be a square.

2.1 Before quitting the search for an extension, we should check whether or not we
have inadvertently left out some conditions. One difference between triangles and
higher order polygons is that a triangle always has a circumcircle. So let us restrict
the class of polygons to those which can be inscribed in a circle. Now it follows easily
that all inscribed equilateral polygons are equiangular but not conversely (which
again follows by considering the rectangle).
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2.2 Let us re-examine why the
rectangle is a counter example.
Referring to the figure, where it is
assumed the n-gon is equiangular, we
obtain the simultaneous set of linear
equations

0,+6, =k
0,+05 =k,
0,+0; =k,
from which
0,=06;=05=...=0,4,
0, =04 =6 = =0,.

If n is odd, the angles are constant and the polygon is regular; if » is even, the polygon
needs not be regular. This latter result is ascribed by H.S.M. Coxeter to M. Riesz.

2.3 The figure and the set of equations suggest an extension of the result of Riesz.
We first define a d-diagonal of an n-gon, with 2d < n, as a diagonal which "skips" d -
1 vertices (e.g., in the above figure, A;A, is a 1-diagonal and A;A, is a 3-diagonal).
One can now show that if all the d-diagonals (d fixed) of an inscribed n-gon are
congruent and (n,d) = 1, then the polygon is regular (when d = 2, we get Riesz's
result). For a proof and similar results for circumscribed polygons, see [2].

2.4 Instead of going from a triangle to a polygon, we can consider the 3-
dimensional extension to tetrahedra. Here if all the edges are congruent, it follows
easily that all the face angles are congruent and that all the dihedral angles are
congruent. I leave it as an exercise to show that if all the dihedral angles are
congruent then the tetrahedron is regular, and to extend this result to n-dimensional
simplexes, for which there are many different sets of angles to consider.
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3. Intersecting Curves on a Surface [6].

It is well known that two great circles of a sphere always intersect in two points which
are antipodal. The usual proof follows by noting that the planes of the two circles
must both contain the center of the sphere and thus the planes have a line of
intersection which includes a common diameter of the two great circles.

3.1 Although a first proof of a given result can lead to an extension, in many cases it
is an alternate proof that more readily leads to the extension. Another proof which
appears more basic is that since each circle divides the surface into two congruent
regions, the circles must intersect. This gives the following generalization whose
proof is identical except for the replacing of "circles” by "curves”.

If two simple closed centrosymmetric curves lie on a simple closed
centrosymmetric surface homeomorphic to a sphere, with all three having
the same center, then the two curves intersect.

By centrosymmetry, the points of intersection will occur in pairs of antipodal points.
Also, it is to be noted that the result is not valid on a multiconnected surface, e.g. a
torus.

3.2 On looking back at the previous proof it will be seen that the condition of
centrosymmetry is not necessary. It was essential only that the surface and the two
curves each be mapped into themselves by a reflection through a common point. We
now formalize these ideas. Let O denote an interior point of a three-dimensional
region starlike with respect to 0, and with boundary S, and consider a mapping f of §
into itself such that each point of S goes into its antipodal point with respect to 0. The
result in 3.1 can now be extended to:

If C,, and C,, are two simple closed curves on S such that C; and C, each
map into themselves under the mapping f, then C; and C, intersect in
pairs of antipodal points with respect to 0.

3.3 On re-examination of this result and its proof, we see that a wider
generalization is possible which is given by:

If C; and C, are two simple closed curves on a simple closed surface S
and if f is a continuous mapping, without fixed points, of S into itself
such that C, = f(C;) and C, = iC,), thenC; n Cy = 0.

A proof follows by using the Brouwer fixed point theorem; see [6].
Even though what one should be looking for in the re-examination of known results

has been indicated in the above examples, re-examination does not automatically lead
to further non-trivial results. To aid in this re-examination, we consider some
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heuristics given by Polya in his books mentioned earlier, namely: specialize,
generalize and make analogies. I now give some further illustrations.

4. Maximum Number of Terms in a Sequence
(MO, 1977, #2) In a finite sequence of real numbers, the sum of any seven

successive terms is negative, and the sum of any eleven successive terms is
positive. Determine the maximum number of terms in the sequence.

Let the sequence be A;, A,, ...... , By considering the array
4 A, 4;
A, Az Ag
A Ay Ay
Ap Ap Ay

it follows that the number of terms is less than 17, and by an explicit construction it
can be shown that 16 is the maximum.

4.1 One possible generalization is to vary the numbers given in the problem. This
was done by the English contestant John Rickard, who deservedly won a special prize
for it. He replaced 7 and 11 by two relatively prime integers p and q and then showed
that the maximum number is p + ¢ - 2. A further extension appeared in
Mathematical Spectrum 12 (1979/80) 61 where now (p,q) =d. A still further
extension is to require the additional condition that the sum of any r successive terms
is zero.

5. Isoperimetric Inequality [7].

It is known that the isoperimetric quotient 1.Q. = A/P? for triangles of area A
and perimeter P is a maximum for the equilateral case.

5.1 On "playing around" with this, one is led to the following:

Given that A, is an interior point of an equilateral triangle ABC and A,
is an interior point of triangle A,BC, then
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1 Q.(A,BC) > LQ.(A,BC).

One expects this inequality since one feels intuitively that A;BC is "closer" to being an
equilateral triangle than A,BC is.

5.2 By increasing the dimensionality of the problem, one can consider the
analogous inequalities for a simplex in E", for which there are many different
isoperimetric quotients. In particular for E%, given that A, is an interior point of a
regular tetrahedron ABCD and that A, is an interior point of tetrahedron A;BCD,
then 1.Q.(A;BCD) > ILQ.(A,BCD) where here the isoperimetric quotient of a
tetrahedron T is defined by

LQ.T) = Vol (T)/[Area (T)]¥?

A proof is given in [4]. For another isoperimetric quotient, replace Area®? by the
total edge length cubed.

6. Maximum Volume of a Tetrahedron.

(IMO, 1967, #2) Prove that if one and only one edge of a tetrahedron is greater
than 1, then its volume is < %

6.1 We can extend the problem simultaneously in two different ways as in [8]:

Determine the maximum volume of an n-dimensional simplex if at most r edges
are greater in length than 1 (r=1,2 ..., n).

This problem is still open. The special case n =3, r =2 or 3 is solved in [9]. For the

r = 3 case it is also assumed that the 3 edges longer than 1 cannot all be concurrent,
otherwise the volume can be unbounded.

7. A Two Triangle Inequality

(Putnam, 1982, B-6) If K(x,y,z) denotes the area of a triangle of sides
x, y, and z, prove that

VK(a,be) + VK(@b'c) < VK(a+a',b+b',c+c’)
This inequality is a special case of one derived by me in [10], and I now give the
motivation for its derivation. A well known elementary inequality for the sides a, b, ¢
of a triangle is

abc 2 (a+b-c)(b+c-a)(c+a-b) 1)
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with equality if and only if a = b = ¢. For a variety of different proofs of this, and for
other references, see {8}. One of the simplest proofs is to square both sides and note
that a?2a?- (b -c)? , etc. Apparently this proof does not readily lead to any
significant extensions. However, by interpreting (1) geometrically, we are led to
several generalizations by an averaging process over the sides of the triangle.

We consider here another triangle A’B’C’ where

a' = gb;o’ pr= Matd,  E (a;b)

Since s = s* (equal semi-perimeters), and triangle A’B’C is "closer" to an equilateral
triangle than ABC, we should expect that K (A'B’C") 2 K(ABC). Since 8K*A'B'C")
= abcs, the latter inequality is equivalent to (1).
More generally, we should expect the same area inequality for any reasonable
averaging transformation which makes triangle A'B'C "more equilateral” than ABC.
More precisely, if

a =ua+vb +wc,

b'=va+wb + uc,

c'=wa+ub +vc,
where

u+v+w=1 u,v,w 20,

thens’ = sand K(A'B'C) = K (ABC). This last triangle inequality is equivalent to

(xa+yb+zc) (ya+zb+xc) (za+xb+yc) 2 (a+b-c) (b+c-a) (c+a-b)
where

x+y+z=1, -1 £x,y,z <1,

7.1 We can generalize further by letting a;, b;, ¢; denote the sides of n
triangles AB,C; (i=1, 2, ....... , n). Then the three numbers

a= Zwg b= Zwp, c= Zwg;
where Zw; = 1, w; > 0, are possible sides for a triangle ABC. Then,

KABCY? = Zw;s; .Zw; (5; -a;). Zw;(s; -b;) . Zw;(s; -¢;)
and s= Zws; Applying Cauchy's inequality twice yields
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VK@BC) > X,w, VK (4B, C;)

with equality if and only if the n triangles are directly similar. Further inequalities
can be obtained by averaging over the angles of the triangle [7].

8. Weierstrass Product Inequality.

In a recent problem-solving paper by Schoenfeld [12], there is a discussion
about the following problem:

Let a, b, ¢, and d be given numbers in [0, 1]. Prove that
1-a)A-b)Q-0)(1-d)=21-a-b-c-d.

(We have changed the problem insignificantly by taking a closed interval rather than
an open one.) Schoenfeld notes: "Virtually all of the Mathematicians I've watched
solving it begin by proving the inequality (1 - @) (1 -b) = 1 -a-b. Then they
multiply this inequality, in turn, by (1 - ¢) and (1 - d) to prove the three - and four-
variable versions of it". Incidentally, this corresponds to Polya's heuristic, specialize.
The proof for the n-variable version follows inductively. In a competition or on an
exam, any method which works fairly quickly is just fine. However, if one wishes to
get to the heart of the inequality, inductive proofs are usually not the way to go. This
may be one of the subconscious reasons that many students shun such proofs.

An important property of the above inequality is that it is linear in each of the
variables. Therefore, the inequality holds since it holds when each variable is at an
endpoint of the interval [0, 1]. Not only is this proof more satisfactory than the
inductive one, it leads to the following generalizations quite easily.
8.1 The right hand side of the n-variable inequality

A-x)A-2x) ... 0A-x,) = l-x; -x5-...-%,

(where 0 < x; < 1) is just the constant term plus the linear part of the product of the
left hand side. So why stop with the linear terms! If we define Ty, T5, ...., T, by

E+x)E+xy) ... (t+x) = A+ T+ T2 + T,

thenfor0 < x; <1,
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n
1'T1+T2'... T2" ZH(I'XI) = 1'T1+T2+...'T2x+1

=1

whete r=0,1...[ 5], s = 0,1, [“52| This last result is obviously valid if

all the x; are zero. If m (> 0) of the x; are 1 and the rest are zero, then all we need
show is that:

[G1- [F1+...+ Blzo= [G] - [7]+...- [%.1.

which follows by the unimodal and symmetric character of the binomial coefficients.
9. An Inequality.

If1 2 ab,c, 2 0,then

b+g+1 +c+:+f+a+lf+1 +d-a)I-b)l-c) <1

This inequality is a special case of a more general one due to Andre Giroux and first
established by him using sophisticated methods. Subsequently he, and independently
A. Meir and I, obtained simpler proofs. I then set the proof of the special case above
as a problem in the 1980 U.S.A. Mathematical Olympiad. Most of the proofs given in
the Olympiad were of the "direct brutal assault” kind not leading easily to extension.
A simple proof follows by first noting that the function on the left hand side of the
inequality is convex in each of the variables a, b, c. Thus the function takes on its
maximum value at the extreme value 0 or 1 for each of the variables, i.e., at some
vertex (a,b,c) of the cube whose coordinates are 0's and 1's. Since the value of the
function is 1 at each vertex of the cube, we are done.

9.1 In asimilar way, we can establish the more general inequality

21+s- +H(1 ) <1

where O0<x; £1;uv21; and x; + xp +... +x, =35.
Giroux's inequality, corresponding to u = v = 1, later reappeared as a proposed
problem [13].

10. Summations
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"

Determine the sum 71[+§2T+---+ CED

Schoenfeld [12] notes that most students will begin by doing the addition and placing
all the terms over a common denominator, whereas the typical expert will calculate a
few cases from which the inductive pattern is clear and easy. If all you want is the
answer, this is okay. If you want more, then inductive proofs are not good enough as
was indicated above in 8. I would also want the student to learn something about
summation of series in general. Summation is analogous to definite integration,
where by virtue of the fundamental theorem of calculus, one first tries to obtain the
anti-derivative of the integrand. This search is simplified by having a table of
integrals which is obtained in a reverse fashion. One merely takes a set of functions
and differentiates them, which is an easy direct operation. Then one simply reverses
the table to give the integral table. One can do the same thing with discrete sums. The
fundamental theorem of finite summation is

> (F(k) - F(k-1)} = F(n) - F(0) .
k=1

So to find the above sum, "all we need to do" is express the summand as an "anti-
derivative”, i.e., as a difference F(k) - F(k - 1). Since the summand is

k k+ 1 1 gl
T+ = k+ D7 -~ kx0T = & - &k+ 01 >

the sum is immediately 1 - (,,—+II-)T

In general, however, finding the summation anti-derivative can be a difficult
problem. To aid in this process, as in integration, we make a summation table in
reverse fashion. This is done in books on finite differences, in particular see [14].
Here we start with (2) and make a table by considering various functions F. Finally,
we reverse the order of the table. As examples, we have the following:

n
F(k) = (k+1)! yields Y kk! = (n+1)! - 1,
k=1

. an
n sm
F) = sinak + % - 5) vields 3.sinak = — L sn
= sm 3
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. an
sm 73 an+1)

n
F(k) = sin(@k+%) yields ¥ cosak = ——= . cos 57— ,
k=1 sin 3

F(k) = km*1 yields

L 1 { m+ 1 L m+ 1 1 }
K" = nm+ 14 e km-2
T S TR (1 DR LT B

Continuing the same way, we can obtain the sums

o0
z X
tan™] [—2—"—2"‘] = tan'lx,
n“ + n + x
n=1 '

o0

_n _1
22n4+1 -4
n=

Derivations of the latter two sums and related ones are given in [15].

It is to be noted that there are times when the inductive method does lead to an
essential part of a given result. For example, consider the geometric theorem of T.

Hayashi:

If a convex polygon inscribed in a circle can be divided into triangles from one
of its vertices, then the sum of the radii of the circles in these triangles is
the same, whichever vertex is chosen.

An inductive proof leads one to consider the case of a quadrilateral first. In this case,
it is the essential and hard part of the proof. The rest is easy.

For our final illustration, we consider an applied problem.
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11. Flying in a Wind Field

It is a known elementary result that if an airplane flies an up and back straight
course with a constant speed relative to a constant wind along the course, then the time
of flight is greater than if there were no wind. One loses more time on the upwind
part of the course then one gains on the downwind part, that is,

. d d__ 2 d d
L= w ™ty - w TV w2yt

where v = constant speed of the airplane, w = constant wind speed, 2d = total length of
the course, ¢ = time of flight.

11.1 To extend the previous result, let the airplane fly any path and then back along it
in an arbitrary continuous stationary wind field. Here the wind speed and direction
can vary in space but not in time. By considering the flight back and forth over any
small element of the path and by using the above result, slightly modified, we obtain
the same time inequality.

11.2 If we examine the expression for ¢ above, we see that it is an increasing
function of the wind speed, as is to be expected intuitively. To extend this result to

— —
11.1, we replace the wind field W there by kW where £k is a positive constant. We
now wish to show that the time of flight in 11.1 is an increasing function of k.

First we obtain an expression for the total time of flight. Also, for comparison with a
subsequent extension, we will assume that the path is a closed one. This is not
necessary for the result here.

Let the arc length s denote the position of the plane on its path and let w(s), 0(s)

=
denote respectively the speed and the direction of the wind field W with respect to the
tangent line to the path at position s. We will take the plane's speed as 1 and assume

I
that 1 > kw, otherwise the plane could not make the traverse. By resolving kW into
components along and normal to the tangent line of the plane's path, the airplane's
ground speed is

\]1 - kPw?sin20  + kwcosB

and then the time of flight is given by
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T(k)=f g + }‘ .
'\Jl - k2w?sin?0 + kwcos® 1 - k?w2sin20 - kwcos0

By the A.M. - G.M. inequality, the sum of the integrands is greater than or equal to
2(1 - K2w?)1/2 > 2 which shows that T(k) > T(0) with equality if and only if

- o
kW =U. Then one can show that T'(0) =0 and T "(k) > O since the integrand will
consist solely of positive terms. Thus T(k) is increasing in k.

11.3 The following nice extension was given by T.H. Matthews as a proposed
problem [16]:

If an aircraft travels at a constant airspeed, and traverses (with respect

to the ground) a closed curve in a horizontal plane, the time taken is always
less when there is no wind, than when there is any constant wind.

5

The solution given here leads immediately to another extension. If we let W be the
—)

wind velocity and V the actual plane velocity (which is tangential to the flight path),

e
then |V - Wl is the constant speed of the airplane (without wind) and will be taken
as unity for convenience.

‘We now have to show that
de ds
purel § T
vl

By the Schwarz-Buniakowski inequality,

fﬁ;lds) ‘{%) > (f\d.'.‘)2
vl

Since
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50% =fv.dﬁ =Jf(v-v-v’>.dﬁ +3Cﬁ.dﬁ
d
e T ) -
‘{W.dR=W.§dR =0
we get
j(mds i j(h‘/’-v?fl.ldz?l _ J(d;

(3) now follows from (4) and (5).

an

It is to be noted that in the above proof the closed horizontal curve can be replaced by

%
a space curve and that the wind field W need not be constant; it can be irrotational
since we still have

> -
fW.dR =0

- -
11.4 The latter result can be extended as in 11.2. Let the wind field be kW where W
is irrotational; then the time of flight is given by

T = 3( &
‘\Il - Kw?sin%0@ + kwcosB

Then since 7' (0) =0 and T”(k) > 0, T(k) is increasing in k.

For other related airplane problems, see [17, 18, 19, 20].
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To become proficient in problem creating, as in any other non-trivial activity, one
must have lots of practice. At the U.S.A. Mathematical Olympiad training sessions, I
required the students not only to solve challenging problems but also to submit
original reasonable proposed problems. I did this since I completely agree with Polya
who points out in his books that these activities go hand in hand. Since most of these
students had had little or no practice in problem creating, their first efforts were
usually poor. However, with continual practice their submissions improved
markedly. Here are two examples (for other ones, see [21]):

A quick proof that the rationality of p, g and +p++gq implies the

rationality of Vp is furnished by the identity

_ (p+Ngl+p-g
2 = e

Prove, in a similar fashion, that if p, ¢, r and \/1_7 + \/5 + r are
rational, then so is Vp.

(By Gregg Patruno, now a graduate student at Columbia University. He has recently
extended the result to n rational numbers).

Three disjoint spheres whose centers are not collinear are such that there
exists eight planes each tangent to all three spheres. The points of tangency
of each of these planes are vertices of a triangle. Prove that the circumcenters
of these eight triangles are collinear.

(By Noam Elkies, now a graduate student at Harvard University).
Finally, to conclude this paper, I adapt a quotation of G. Polya.

"Proposing problems is a practical art like swimming or skiing, or playing
the piano: you can learn it only by imitation and practice. This paper cannot
offer you a magic key that opens all the doors and proposes all the problems,
but it offers you good examples for imitation and many opportunities for
practice; if you wish to learn swimming you have to go into the water, and if
you wish to become a problem proposer you have to propose problems".
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Crux Mathematicorum, published by the Canadian Mathematical Society, is a
problem solving journal at the senior secondary and university undergraduate levels
for those who practice or teach mathematics. Its purpose is primarily educational, but
it serves also those who read it for professional, cultural or recreational reasons.

It is published monthly (except July and August). The yearly subscription rate for ten
issues is $C22.50 for members of the Canadian Mathematical Society and $C25 for
non-members.Cheques and money orders, payable to Crux Mathematicorum, should
be sent to:-

The Managing Editor,

Dr Kenneth Williams,
Canadian Mathematical Society,
577 King Edward Avenue,
Ottawa, Ontario,

CANADA, KIN 6N5.
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