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From the President

Dear Fellow Federalists!

I hope you are enjoying happy and productive lives. The 7" Congress of
our World Federation of National Mathematics Competitions is being
organized by our Past President Dr Maria de Losada. It will take
place on July 21-24 (arrival on July 20) 2014 at the Hotel El Prado
in Barranquilla, Colombia, and will include a half-day excursion to the
historic Cartagena. I hope to see you all there. Full details should
appear in the next issue of the journal. So, plan your travel and start
your creative engines!

During our previous congresses and our sections at ICME, the Program
Committee was not always utilized. I know that first hand as a long
term member of the committee and its past chair. I hope this situation
will change, and Dr Kiril Bankov’s Program Committee will be actively
involved in creating academic structure of our 2014 Congress.

I believe that our 2010 Riga Congress had a sound basic structure, built
around the following four sections:
1. Competitions around the World

2. Creating Competition Problems and Problem Solving
3. Work with Students and Teachers
4.

Building Bridges between Research and Competition Problems

This can serve as a foundation for the 2014 Congress and beyond. In
addition, we should have a number of plenary lectures, workshops, and
discussions on issues important to us. Another session was successful in
Riga: a session where we presented our favorite problems and solutions,
which resulted in a small book. I hope such a session will take place in
2014 and more participants will submit their problems, thus creating a
larger book than the one published in Riga.

There is no time for complacency. We can and ought to pull our ef-
forts together and sustain a vibrant World Federation. It means work,
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hard work, but work we love. As the brave American journalist Ed-
ward R. Murrow (the one who in 1954 challenged U.S. Senator Joseph
McCarthy on live television) said on October 15, 1958,

“Our history will be what we make it. If we go on as we are, then
history will take its revenge, and retribution will not limp in catching
up with us.”

Best wishes,

Alexander Soifer
President of WFNMC
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From the Editor

Welcome to Mathematics Competitions Vol. 26, No. 1.

First of all T would like to thank again the Australian Mathematics
Trust for continued support, without which each issue (note the new
cover) of the journal could not be published, and in particular Heather
Sommariva, Bernadette Webster and Pavel Calabek for their assistance
in the preparation of this issue.

In July 2012 at the WEFNMC miniconference in Seoul the new MC’s
Editorial Board was formed. It comprises Waldemar Pompe (Poland),

Sergey Dorichenko (Russia), Alexander Soifer and Don Barry (both
USA).

Submission of articles:

The journal Mathematics Competitions is interested in receiving articles
dealing with mathematics competitions, not only at national and inter-
national level, but also at regional and primary school level. There are
many readers in different countries interested in these different levels of
competitions.

e The journal traditionally contains many different kinds of arti-
cles, including reports, analyses of competition problems and the
presentation of interesting mathematics arising from competition
problems. Potential authors are encouraged to submit articles of
all kinds.

e To maintain and improve the quality of the journal and its use-
fulness to those involved in mathematics competitions, all articles
are subject to review and comment by one or more competent ref-
erees. The precise criteria used will depend on the type of article,
but can be summarised by saying that an article accepted must
be correct and appropriate, the content accurate and interesting,
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and, where the focus is mathematical, the mathematics fresh and
well presented. This editorial and refereeing process is designed to
help improve those articles which deserve to be published.

At the outset, the most important thing is that if you have anything
to contribute on any aspect of mathematics competitions at any level,
local, regional or national, we would welcome your contribution.

Articles should be submitted in English, with a black and white photo-
graph and a short profile of the author. Alternatively, the article can
be submitted on an IBM PC compatible disk or a Macintosh disk. We
prefere BTEX or TEX format of contributions, but any text file will be
helpful.

Articles, and correspondence, can also be forwarded to the editor by mail
to

The Editor, Mathematics Competitions
Australian Mathematics Trust
University of Canberra Locked Bag 1
Canberra GPO ACT 2601
AUSTRALIA

or to

Dr Jaroslav Svrcek

Dept. of Algebra and Geometry
Palacky University of Olomouc
17. listopadu 1192/12

771 46 OLOMOUC

CZECH REPUBLIC

jaroslav.svrcek@upol.cz

Jaroslav Svréek
June 2013
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What “Problem Solving” Ought to Mean
and how Combinatorial Geometry
Answers this Question:
Divertismento in Nine Movements

Alexander Soifer

Born and educated in Moscow, Alexan-
der Soifer has for 33 years been a Pro-
fessor at the University of Colorado,
teaching math, and art and film his-
tory. He has published over 200 arti-
cles, and a good number of books. In
the past 3 years, 6 of his books have ap-
peared in Springer: The Mathematical
Coloring Book: Mathematics of Color-
ing and the Colorful Life of Its Cre-
ators; Mathematics as Problem Solv-
ing: How Does One Cut a Triangle?; Geometric Etudes in Combinatorial
Mathematics; Ramsey Theory Yesterday, Today, and Tomorrow; and Colorado
Mathematical Olympiad and Further Explorations. He has founded and for
29 years ran the Colorado Mathematical Olympiad. Soifer has also served
on the Soviet Union Math Olympiad (1970-1973) and USA Math Olympiad
(1996-2005).

The goal of mathematics education should be showing in a class-
room what mathematics is and what mathematicians do. This can
be achieved not by teaching but rather by creating an atmosphere in
which students learn mathematics by doing it. As in “real” math-
ematics, this can be done by solving problems that require not just
deductive reasoning, but also erperiments, construction of examples,
and synthesis in a single problem of ideas from various branches of
mathematics. My recent five Springer books provide just right illus-
trations of these ideas, fragments of “live” mathematics.

Give a man a fish, and you will feed him for a day.
Teach a man how to fish, and you will feed him for a lifetime.

Laozi (VI century BC)
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1 Laozi and a Problem Solving Approach to Life

The great Chinese sage Ldozi proposes to teach a man to fish as a method
of solving the problem of survival. This does go much further than giving
a man a fish. However, is it good enough in today’s rapidly changing
world? We will come back to Ldozi at the end of this essay.

2 The Principal Goal of Mathematics Education
What is the main goal of mathematics education?

Is it passing standardized three-letter tests, such as SAT, ACT, GRE,
KGB, CIA (well, the two latter triples are from a different opera :-)).

Is it “teaching to the test,” as USA President George W. Bush believed?

Most would agree that problem solving is the goal. Fair enough, but
there is no agreement on the answer to a natural question: Just what is
problem solving?

A typical secondary school problem looks like A = B, i.e., given A prove
B by using theorem C'. In real life, no one gives a research mathematician
a B, it is discovered by intuition and is based on experimentation. And of
course, no one has a C since nobody knows what would work to solve the
problem which is not yet solved: a research mathematician is a pioneer,
moving along an untraveled road!

And so, we ought to bring the school mathematics as close as possible to
research mathematics. We ought to let our students experiment in our
classroom-laboratory. We ought to let them develop intuition and use it
to come up with conjectures B. And we ought to let our students find
that tool, theorem C' that does the job of deductive proving.

In my opinion, the real goal of mathematical education is to demonstrate
in the classroom what mathematics is, and what mathematicians do.

3 Experiment in Mathematics

I have a good news and bad news for you. The bad news is, it is impos-
sible to “teach” problem solving. The good news is, we can create an

9
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environment in which students learn problem solving by solving prob-
lems on their own, with our gentle guidance. And I do not single out
mathematics—all fields of human endeavour are about problem solving.
Alright, but what kind of problems should we offer our students?

First of all, we ought to set up a mathematical laboratory, where stu-
dents conduct mathematical experiments, develop inductive reasoning
and create conjectures. The following classic example comes from [2].

Partitioning the Plane. In how many regions do n straight lines in
general position partition the plane?

We say that several straight lines on the plane are in general position if
no two lines are parallel and no three lines have a point in common.

Solution. Let us denote by S(n) the number of regions into which
n straight lines in general position partition the plane. Now let us
experiment: we draw one line on the plane and get S(1) = 2; we add
another line to see that S(2) = 4; we add one more line to shows that
S(3) = 7; and one more line demonstrates that S(4) = 11 (please see
Figures 1 and 2).

/ \

Figure 1. S(3) =7 Figure 2. S(4) =11

Let us put the data in a table:

10
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Number of Lines N | S(n) | Difference S(n) —S(n — 1)
1 2 2
2 4
3
3 7
4
4 11

We notice that

S(n)=Sn-1)+n.
This recursive formula strikingly resembles the growth in the well-known
equality 1+ 2+ ---4+n = %n(n—i—l), ie,if Si(n) =142+ ---+n,
we would get the same recursive relationship as in our original problem:
Si(n) =S1(n—1) +n.

So let us check the hypothesis S(n) = $n(n + 1):

n| S(n) | sn(n+1)
1 2 1
2 4 3
3 7 6
4 11 10

Our hypothesis does not work, but we can now see from the table above
that S(n) and n(n + 1) differ only by 1, and apparently always by 1!
Thus, we can now conjecture:

S(n) = %n(n +1)+ 1.

11
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All there is left is to prove our conjecture, say, by mathematical induc-
tion.

As we already know, our conjecture holds for n = 1.

Assume that it is true for n = k, i.e., k straight lines in general position
partition the plane into S(k) = 1k(k + 1) 4 1 regions.

Let now n = k + 1, i.e,, let k + 1 straight lines in general position
be given in the plane. If we remove one of the lines L, then by the
inductive assumption the remaining k lines would partition the plane
into S(k) = 1k(k + 1) + 1 regions. Since we have k + 1 lines in general
position, the remaining k lines all intersect the line L; moreover, they

intersect L in k different points a1, as, ..., ax (see Figure 3).
—0
(5] as . ag
Figure 3

These k points split the line L into k41 intervals. Each of these intervals
splits one region of the partition of the plane by k lines into two new
regions, i.e. instead of k+ 1 old regions we get 2(k + 1) new regions, i.e.,

S(k+1) = S(k) + (k+1),

therefore,

S(k+l):%k(k+1)+1+(kz+l):%(k+1)(k+2)+1.

In other words, our conjecture holds for n = k+1. Thus, n straight lines
in general position partition the plane into %n(n + 1) + 1 regions.

4 Construction of Examples in Mathematics

Construction of examples and counterexamples plays a major role in
mathematics, amounting to circa 50 % of its results. In fact, the great
Russian mathematician Israel M. Gelfand once said,

Theories come and go; examples live forever.

12
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Yet, practically the entire school mathematics consists of analytical
proofs. In order to bring instruction closer to “the real mix” we ought
to include construction of examples and counterexamples in education.
Let me share one example, where a construction solves the problem [5].

Positive? (A. Soifer, 2001). Is there a way to fill a 2001 x 2001 square
table T" with pluses and minuses, one sign per cell of T', such that no
series of interchanging all signs in any 1000 x 1000 or 1001 x 1001 square
of the table can fill T" with all pluses?

Solution. Having created this problem and a solution for the 2001 Col-
orado Mathematical Olympiad, I felt that another solution was possible
using an invariant, but failed to find it. Two days after the Olympiad,
on April 22, 2001, the past double-winner of the Olympiad Matt Kahle,
now Professor at Ohio State University, found the solution that eluded
me. It is concise and beautiful.

Define (please see Figure 4)

® = {the set of all cells of T, except those in the middle row}.

Figure 4

Observe that no matter where a 1000 x 1000 square S is placed in the
table T, it intersects ® in an even number of cells, because there are 1000
equal columns in S. Observe also that no matter where a 1001 x 1001
square S’ is placed in T, it also intersects ® in an even number of unit

13
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squares, because there are 1000 equal rows in S’ (one row is always
missing, since the middle row is omitted in S.)

We can now create the required assignment of signs in 7" that cannot
be converted into all pluses. Let ® have any assignment with an odd
number of + signs, and the missing in ® middle row be assigned signs
in any way. No series of operations can change the parity of the number
of pluses in ®, and thus no series of allowed operations can create all
pluses in .

5 Method & Anti-Method

Tiling with Dominoes. (Method). Can a chessboard with two diag-
onally opposite squares missing, be tiled by dominoes (Figure 5)?

=

Solution. Color the board in a chessboard fashion (Figure 6). No matter
where a domino is placed on the board, vertically or horizontally, it
would cover one black and one white square.

Figure 5

m

Figure 6

14
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Thus, it is necessary for tileability to have equal numbers of black and
white squares in the board—Dbut they are not equal in our truncated
board. Therefore, the required tiling does not exist.

It is certainly impressive and unforgettable to see for the first time how
coloring can solve a mathematical problem, as we have witnessed here.
However, I noticed that once a student learns this coloring idea, he
always resorts to it when a chessboard and dominoes are present in the
problem. This is why I created the following “Anti-Method” Problem
and used it in the Colorado Mathematical Olympiad [5].

The Tiling Game (Anti-Method, A. Soifer, 1989). Mark and Julia
are playing the following tiling game on a 1998 x 1999 board. They in
turn are putting 1 x 1 square tiles on the board. After each of them made
exactly 100 moves (and thus they covered 200 squares of the board) a
winner is determined as follows: Julia wins if the tiling of the board can
be completed with dominoes. Otherwise Mark wins. (Dominoes are 1 x 2
rectangles, which cover exactly two squares of the board.) Can you find
a strategy for one of the players allowing him to win regardless of what
the moves of the other player may be? You cannot? Let me help you:
Mark goes first!

Solution. Julia (i.e., the second player) has a strategy that allows her
to win regardless of what Mark’s moves may be. All she needs is a
bit of home preparation: Julia prepares a tiling template showing one
particular way, call it T', of tiling the whole 1998 x 1999 chessboard.
Figure 7 shows one such tiling template T" for a 8 x 13 chessboard.

The strategy for Julia is now clear. As soon as Mark puts a 1 x 1 tile
M on the board, Julia puts her template 7" on the board to determine
which domino of the template T contains Mark’s tile M. Then she puts
her 1 x 1 tile J to cover the second square of the same domino (Figure
8).

6 Synthesis & Combinatorial Geometry

School mathematics consists predominantly of problems with single-idea
solutions, found by analysis. We ought to introduce a sense of mathemat-

15
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13

Figure 7. Tiling template for a 8 x 13 chessboard

13

Figure 8. Winning Strategy

ical reality in the classroom by presenting synthesis, by offering problems
that require for their solution ideas from a number of mathematical dis-
ciplines: geometry, algebra, number theory, trigonometry, linear algebra,
etc.

And here comes Combinatorial Geometry! Tt offers an abundance of
problems that sound like a “regular” secondary school geometry, but
require for their solutions synthesis of ideas from geometry, algebra
number theory, trigonometry, ideas of analysis, etc. See for example
[3]; [4]; and [1].

Moreover, combinatorial geometry offers us open-ended problems. And
it offers problems that any geometry student can understand, and yet no

16
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one has yet solved! Let us stop this discrimination of our students based
on their young age, and allow them to touch and smell, and work on real
mathematics and its unsolved problems. They may find a partial advance
into solutions; they may settle some open problems completely. And they
will then know the answer to what ought to become the fundamental
questions of mathematical education:

What is Mathematics?
What do mathematicians do?

In fact, I would opine that every discipline is about problem solving.
And so the main goal of every discipline ought to be to enable students
to learn how to think within the discipline, how to solve problems of the
discipline, and finally what that discipline is, and what the professionals
within the discipline do!

And more generally, we can ask, what is life about? I believe that
Life itself is about overcoming difficulties, i.e., solving problems.
And mathematics to sciences does what gymnastics does to sports:
Mathematics is gymnastics of the mind.

Doing mathematics develops a universal approach to problem solving
and intuition that go a long way in preparing our students for solving
problems, no matter what kind of problems they will face in their lives.

7 Open Ended and Open Problems

As a junior at the university, I approached my supervisor Professor
Leonid Yakovlevich Kulikov with an open problem I liked (he was my
supervisor ever since my freshman year). He replied, “Learn first, the
time will come later to enter research.” He meant well, but politically
speaking, this was discrimination based on my age. Seeing my disap-
pointment, Kulikov continued, “It does not look like I can stop you

17
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from doing research. Alright, whatever results you obtain on this open
problem, I will count them as your course work.” Soon I received first
research results, and my life in mathematics began.

We ought to allow our students to learn what mathematicians do by
offering them not just unrelated to each other exercises but rather series
of problems leading to a deeper and deeper understanding. And we
ought to let students “touch” unsolved problems of mathematics, give
them a taste of the unknown, a taste of adventure and discovery. And
combinatorial geometry serves these goals very well, providing us with
easy-to-understand, hard-to-solve—or even unsolved—problems!

I will formulate here two examples. The volume of this essay does not
allow including the solutions. You can find them in my five recent
Springer books, listed in References.

Points in a Triangle [3] Out of any n points in or on the boundary
of a triangle of area 1, there are 3 points that form a triangle of area at
least 1.

1

a) Prove this statement for n = 9.

b) Prove this statement for n = 7.
¢) Prove this statement for n = 5.
d) Show that the statement is not true for n = 4, thus making n =5

best possible.

Chromatic Number of the Plane [1] No matter how the plane is
colored in n colors, there are two points of the same color distance 1
apart.

a) Prove this statement for n = 2.

b) Prove this statement for n = 3.
c) Disprove this statement for n = 7.
d) The answer for n = 4, 5, and 6 is unknown to man—this is a

forefront of mathematics!

18
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8 Beauty in Mathematics

I suspect you all have encountered examples of beauty of the mathe-
matical kind. And so, I will share just one example, a problem that
my high school friend and I created when we were fellow graduate stu-
dents in Moscow. It was published in Kvant magazine, and we were even
handsomely compensated!

Forty-One Rooks (A. Soifer and S. Slobodnik, 1973). Forty-one
rooks are placed on a 10 x 10 chessboard. Prove that you can choose five
of them that do not attack each other. (We say that two rooks “attack”
each other if they are in the same row or column of the chessboard.)

Solution, first found during the 1984 Olympiad (!) by Russel Shaffer;
the idea of using symmetry of all colors by gluing a cylinder, belongs to
my university student Bob Wood.

Let us make a cylinder out of the chessboard by gluing together two
opposite sides of the board, and color the cylinder diagonally in 10 colors
(Figure 9).

YN
N
N
\\
\\_,/
Nl [ M
\\_//
\\_//
\\_//
M
//
%

Figure 9. One out of the ten one-color diagonals is shown

Now we have 41 = 4 x 10+ 1 pigeons (rooks) in 10 pigeonholes (one-color
diagonals), therefore, by the Pigeonhole Principle, there is at least one

19
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hole that contains at least 5 pigeons. But the 5 rooks located on the
same one-color diagonal do not attack each other!

9 Returning to Laozi 2600 Years Later

On September 5, 2011, I wrote a letter to the Editor of The New York
Times precisely on the debate taking place between two most popular
approaches to mathematical education. Let me present this letter here
in its entirety:

In “In Classroom of Future, Stagnant Scores” (September 4, 2011,
p- 1), Matt Richtel discusses two approaches to mathematical edu-
cation, “embrace of technology” vs. “back to the basics.” Should
we not first ask, what are the goals of education? To paraphrase
the great Chinese thinker Ldozi, I would say: Give student skills,
and you will feed him in the short run. Let student learn ideas, solve
problems, and you will feed him for a lifetime.

In the new “embrace of technology” approach I support taking
teacher off the pedestal of a lecturer: one cannot teach mathematics,
or anything for that matter. Students can learn math, and anything
else, only by doing it, with a gentle guidance of the teacher. Tech-
nology in the classroom more often than not treats students like
robots, and preprograms them with skills of today. But technology
nowadays changes rapidly, as does the societal demands for particu-
lar skills. A student who has learned critical thinking and problem
solving will easier adopt to the rapidly changing world.

“Back to the basics” is also not the best solution, for it empha-
sizes mind numbing drill, and it also treats students as robots and
preprograms them with skills.

The goal in the mathematical classroom ought to be a practical
demonstration of what mathematics is and what mathematicians
do. Everything, life herself included, is about overcoming difficulties,
solving problems.

We ought to abandon standardized multiple choice testing of skills.
There are more important things to test. Over the past 29 years, in
the Colorado Mathematical Olympiad, we offered middle and high
school students 5 problems and 4 hours to think and solve. We “test”
not topics, not skills, but creativity and originality of thought.

20
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Providing public education is not just an ethical thing to do—it is a
profitable investment. Are there many jobs today for computer-illiterate
persons? And yet just one generation ago, computers were a monopoly
of researchers, and one generation before that did not exist at all.

Not every education is as good an investment as another. And we ought
to go beyond Ldozi and his famous lines:

Give a man a fish, and you will feed him for a day.
Teach a man how to fish, and you will feed him for a lifetime.

Not quite, dear Sage. Not in today’s day and age. What if there is no
more fish? What if the pond has dried out? And your man has only one
skill, to fish?

Education ought to introduce students to ideas and how to solve prob-
lems no matter what field. A problem solver will not die if the fish disap-
pears in a pond—he’ll learn to hunt, to grow veggies, to solve whatever
problems life puts in his path.

And so, we will go a long way by putting emphasis not on training skills
but on creating atmosphere for developing problem solving abilities and
attitudes:

FEnable a man to learn how to solve problems,
And you will feed him for a lifetime!
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1 Introduction

In today’s technologically enhanced world mathematics competitions be-
come available to more students who are interested in challenging tasks.
In this paper we look at gender-related issues pertinent to participation
in the Virtual Mathematical Marathon over two years. Our study con-
centrates on the following questions: what were boys’ and girls’ partici-
pation patterns and how successful were they in online problem-solving
competition.

The Virtual Mathematical Marathon (VMM, http://www8.umoncton.
ca/umcm-mmv/index.php) is an online competition open to everybody
who is interested in solving challenging problems over a long period of
time. As an extension of the virtual interactive learning community
CAMI (Chantier d’Apprentissages Mathématiques Interactifs; Freiman
et al., 2009), the Marathon provides Grade 3-9 students with challenging
mathematical problems.

Besides CAMTI’s regular Problem of the week activity that was conducted
over the school year, we developed a long-term summer competition for
young students who may have interest in solving more challenging tasks
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in a form of competition. A new section became available in summer
2008 and since that time, four summer rounds have been organized.
Moreover, support received from the Canadian Natural Sciences and
Engineering Research Council (Promoscience Grant, 2009-2011) helped
us to develop a bilingual version of the Marathon (French and English)
and introduce a winter round since 2010, thus making it a year-round
competition. First results of the project based on 2008-2009 participa-
tion data were presented at the PME-36 Research Forum (Freiman &
Applebaum, 2009) and in a journal article (Freiman &Applebaum, 2011).
This paper is based on the work presented in the Topics Study Group 34
on mathematics competitions at the ICME-12 congress while extending
our investigation of gender-related issues in virtual environments.

2 Gender-related data on maths competitions: is
there an issue?

Several educators express a concern regarding gender difference in math-
ematics performance and the underrepresentation of women in science,
technology, engineering and mathematics (STEM) careers (National
Academy of Science, Beyond Bias and Barriers: Finding the potential
of women in academic science and engineering, 2006; Hyde et al., 2008).
Gender inequity is particularly evident in data related to the number of
girls participating in the International Math Olympiad, or the number
of female professors in university mathematics and engineering depart-
ments (Hyde & Mertz, 2009). There are several ways in which this
problem may be addressed.

First, psychologists are looking for gender differences in brain struc-
ture, in hormones, in the use of brain hemispheres, nuances of cognitive
or behavioural development and consequent spatial and numerical abil-
ities that may predispose males to a greater aptitude and success in
mathematics (Halpern, 1997; Moir & Jessel, 1989). However, several
findings reported in the literature regarding this matter are not consis-
tent (Spelke, 2005), partly due to the fact that experience alters brain
structures and functioning (Halpern, et al., 2007).

Second, detailed measurements of students’ achievements in mathemat-
ics are being performed by educators at different stages of schooling in
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an attempt to identify the moment of occurrence and further dynamics
of gender gaps in mathematics. Many studies are consistent in their ob-
servation that the gender gap becomes more evident as students progress
towards higher grades, especially if testing involves advanced topics in
mathematics and higher cognitive level items. In contrast to earlier find-
ings, some more current data provide no evidence of a gender difference
favouring males emerging in the high school years (Hyde et al., 2008).

Yet another interesting observation is that “achievement gains are in-
sufficient unless the self-beliefs of girls have changed correspondingly”
(Lloyd, Walsh & Yailagh, 2005, p. 385). Research that views gender
differences through the lenses of the attribution theory (see e.g. Ban-
dura, 1997) suggests that girls tend to attribute their math successes to
external factors and to effort and their failures to their own lack of abil-
ity (self defeating pattern), whereas boys tend to attribute the causes
of their successes to internal factors and their failure to external factors
(self-enhancing pattern). Since it is better for an individual to attribute
success to ability, rather than to effort, because ability attributions are
more strongly related to motivation and skill development (Schunk &
Gunn, 1986), these patterns have explained in part girls’ poorer achieve-
ment(Lloyd et al., 2005).

A report of the American Association of University Women How Schools
Shortchange Girls (1992) focused on girls being discouraged from study-
ing math and science. The report indicates that “girls receive less atten-
tion in the classroom than boys and less encouragement for their efforts.
In addition, the study showed that many classrooms created the atmo-
sphere of competition among students. Such an atmosphere played to
the strength of boys, who were socialized to compete, but often intimi-
dated girls, who were more often socialized to collaborate.” (Williams,
2006, p. 301)

A third way of addressing the gender gap in mathematics is to investigate
the influence of socio-cultural factors. According to Von Glaserfeld
(1989), the context in which learners find themselves is important in
the acquisition of knowledge. First, it was found that parents have
greater expectations for sons regarding their mathematical performance
that they have for daughters, and this has an influence on the students’
results (Leder, 1993). It was also observed that even talented and
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motivated girls “are not immune to the ill effects of gender bias” (Leedy,
LaLonde, & Runk, 2003, p. 290). In this respect it is unfortunate that
stereotypes that girls and women lack mathematical ability persist and
are widely held by parents and teachers (Hyde et al., 2008). Leedy et
al. (2003) studied beliefs held by students participating in regional math
competitions, as well as by their parents and teachers. They found that
mathematics is still viewed as a male domain by men, while girls and
women fail to acknowledge the existence of the bias. They argue that the
task of the school is not to ignore or deny differences in learning styles,
attitudes and performance but to acknowledge them and use them to
develop strategies aimed at providing gender equitable education.

In conclusion, in all three perspectives in research on gender in mathe-
matics—cognitive, instructional, and socio-cultural-—care is needed in
considering how the data are collected, examined and interpreted be-
cause within no approach is there a fully consistent theory that could
explain the existing gender difference observed at the higher level of
mathematical tasks. As Halpern et al. (2007) point out, “there are no
single or simple answers to the complex question about sex difference in
mathematics”, and all “early experience, biological factors, educational
policy, and cultural context” need to be considered when approaching
this question.

3 Technology and gender: what patterns emerge in
mathematics competitions?

While the previous section summarizes research related to gender issues
in mathematics education showing no conclusive findings, similar obser-
vations can be drawn from technology-related studies that we will review
very briefly. For instance Fogasz (2006) reports that when talking about
classroom practices that involve computers as a learning tool, mathe-
matics teachers held gender-based beliefs about their students that the
incorporation of technology has more positive effects on males’ classroom
engagement and on their affective responses, and thus using a techno-
logical approach benefits boys’ learning to a greater extent.

At the same time Wood, Viskic & Petocz (2003) found no gender differ-
ences in the students’ use of computers or in their attitudes towards the
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use of computers. This agrees with ideas expressed by Willams (2006)
quoted above, who reviews studies showing that girls are as confident and
active as are boys in creating webpages, writing blogs, reading websites,
and chatting online, among other activities.

As we mentioned in our earlier publications (Freiman et al., 2009;
Freiman & Applebaim, 2009), the internet can be a suitable challenging
environment for organizing mathematics competitions and problem solv-
ing activities, contributing potentially to the development of mathemat-
ical ability and giftedness. In a recent analysis of middle-school students
participating in a web-based mathematics competition Carreira et al.
(2012) argue that although it cannot be said that by solving problems
online, students do better in mathematics, their data provide us with
an evidence that the use of technology tends to involve more complex
mathematical thinking.

Moreover, the use of technology can be considered as an inclusive form
of mathematical enrichment, providing a tool, an inspiration, or a po-
tentially challenging and motivating independent learning environment
for any student. For the gifted ones, it is often a means to reach the
appropriate depth and breadth of curriculum, to advance at the appro-
priate pace for each learner, as well as to achieve better engagement
and task commitment (Johnson, 2000; Jones & Simons, 2000; Renninger
& Shumar, 2004; Freiman & Lirette-Pitre, 2009; Sullenger & Freiman,
2011).

Being a part of a powerful set of out-of-regular-classroom activities such
as mathematical clubs, mathematical camps, mathematics competitions
(Olympiads), on-line mathematics competitions play a significant role in
nurturing interest and motivating young learners of mathematics, as well
as in identification and fostering the most able and talented (Skvortsov,
1978; Karnes & Riley, 1996; Robertson, 2007; Bicknell, 2008). The
choice of appropriate challenging tasks is also an important condition of
the success of mathematics competitions in developing students’ learn-
ing potential. Leikin (2004, 2007) claims such tasks must be appropriate
to students’ abilities, neither too easy, nor too difficult. They should
motivate students to persevere with task completion and develop math-
ematical curiosity and interest in the subject. As well, they must support
and advance students’ beliefs about the creative nature of mathematics,

28



Mathematics Competitions Vol 26 No 1 2013

the constructive nature of the learning process, and the dynamic na-
ture of mathematical problems as having different solution paths and
supporting individual learning styles and knowledge construction.

While designing our Virtual Mathematical Marathon, we aimed to pro-
vide students with an opportunity to discover their talent, which they
cannot normally demonstrate in the regular classroom (Taylor, Gour-
deau & Kenderov, 2004) thus we considered the marathon as a stimulus
for improving students’ informal learning. Fomin, Genkin & Itenberg
(2000) described that during the marathon that they conducted on a
face-to-face basis, their students managed to increase the number of
problems they solved, relatively to other non-competing frameworks in
which the same students participated.

Regarding gender issues in virtual mathematics competitions, we found
a lack of data that we aim to address in our paper. In the following
section we describe the Virtual Mathematical Marathon’s structure that
allowed us to collect data about participants, including data according
to their gender. The main question we asked in our study was: What
kind of differences have been observed in boys’ and girls’ behaviour during
their participation in VMM? We divided our investigation in two parts
addressing the following two sub-questions:
— Was there a gender difference in the initial enrolment of student-
participants of VMM? How did participation evolve during the com-
petition, according to the gender?

— What were the gender-related patterns in participants’ behaviour
according to the difficulty levels for each year in terms of both,
participation and success rate?

4 Structure of the virtual mathematical marathon

According to our model of the VMM, one set of 4 non-routine chal-
lenging problems was posted twice a week on the CAMI website (www.
umoncton.ca/cami) over 10 weeks, from June to August in 2008 and
2009. In total, 20 sets of problems were offered to the participants of
each round. Every registered member could login, choose a problem,
solve it, and submit an answer by selecting it from a multiple-choice
menu. The automatic scoring system immediately evaluated students’
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success producing a score for the problems and adjusting a total score
that affected the overall standing.

According to the level of difficulty, scores per problem were determined
as follows: level 1(easiest) was scored with 3 points, level 2 with 5 points,
level 3 with 7 points, and level 4 (hardest) with 10 points. To support
students’ participation in the marathon, unsuccessful attempts were also
rewarded with 1, 2, 3, and 4 points respectively. Participants could join
the marathon, solve as many problems as they wished, withdraw, and
come back at any time. The tasks were developed by a team of experts
in mathematics and mathematics education.

Here are examples of such tasks coming from one set:

Level 1 problem: How many numbers from 10 to 200 have the prop-
erty that reversing their digits does not change the number?

A) 17 B) 18 C) 19 D) 20

Comment: students can approach this problem by simply listing all
numbers with the required property. These numbers are 11, 22, 33,
44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, and
191. Thus the answer is 19.

Level 2 problem: Two dice are thrown at random. What is the
probability that the two numbers shown are the digits of a two-digit
perfect square?

A) 1/9 B) 5/36 C) 2/9 D) 5/18

Comment: students need to be familiar with the notion of probability,
some counting techniques, and apply reasoning. They should notice that
the only 2-digit perfect squares that can be constructed from digits 1,
2,3, 4,5, 6, are 16, 25, 36, and 64. This gives 4 possible squares, with
two ways for each to occur. Since there are 36 possible outcomes, the
probability is 8/36 = 2/9.
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Level 3 problem: The volume of a cube is 64 units cubed. What is
the surface area of the cube?

A) 16 units squared B) 64 units squared
C) 96 units squared D) 256 units squared

Comment: students need to know basic facts about cubes. They could
reason as follow. If the total volume is 64, then the side length is 4
units. This means each face has area 4 x 4 = 16. There are 6 faces, so
the surface area is 6 x 16 = 96 units squared.

Level 4 problem: You have 100 tiles, numbered 0 to 99. Take any set
of three tiles. If the number on one of the tiles is the sum of the other
two numbers, call the set “good”. Otherwise, call the set “bad”. How
many good sets of three tiles are there?

A) 160 B) 1600 C) 1225 D) 2401

Comment: students need to notice a pattern and invent some useful
counting technique in order to solve this problem. For example, they
may reason as follows. If 3 is the largest number, there is one good set,
{1,2,3}. If 4 is the largest, there is one good set, {1,3,4}. For 5 and 6
there are two, {1,4,5}, {2,3,5} and {1,5,6}, {2,4,6}, respectively. For
7 and 8 there are three each, for 9 and 10 there are four each, and so on.
In this way, when we reach 97 there are 48 good sets, for 98 there are
also 48, and for 99 there are 49. It remains to compute the sum

L+14+2+2+3+3+--+47+47+48 +48 +49
=494+ (1+48) + (14+48) + (2+47) + (2+47)
4+ 4 (244 25) + (24 + 25) = 49 x 49 = 2401.

5 Proving and disproving conjectures: fostering
exploration and questioning

The participants of the marathon were all members of the CAMI commu-
nity. They received an invitation by email to take part in the marathon.
Most of them were from New Brunswick, Canada. We also had a few
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participants from Quebec and from France. We have no reliable data on
students’ age, but the most frequent CAMI users are Grades 6-8 (ages
12-14) which is a good approximation.

In order to investigate the first sub-question, we have collected and
analysed the data about boys’ and girls’ participation for each of 20
sets (in both years). We collected and compared the numbers of initial
enrolment and on-going visits for boys and girls separately.

In order to address the second sub-question, we have analysed the data
about boys’ and girls’ attempts to solve either all or some particular
problems from each set. For example, some students could attempt
only easier questions (levels 1-2). We were interested to see if the
student was trying to stay in a ‘safer’ zone, or to take some greater
‘risks’ solving more challenging problems (levels 3—4). In this respect, we
were curious whether a virtual problem-solving environment had allowed
girls to exhibit risk-taking behaviour at a rate comparable to the one
of boys. Moreover, we draw on our data from previous analyses that
emphasized particular behaviour of students who were the most active
and successful (the winners of each 20-round game), the group we called
the ‘most persistent’(Freiman & Applebaum, 2011). We have compared
the number of girls and boys among this group. The next section presents
our findings.

6 Preliminary results and discussion

There were 298 students (194 in the first year and 104 in the second
year) who participated in at least one round (of the total of 20 rounds
each year) of the marathon. In the first year, there were more boys
(n =110, or 56.7 %) than girls (n = 84, or 43.3 %). In the second year
the number of girls was slightly higher than number of boys (n = 56,
or 53.8 % against n = 48, or 46.2 %). Over two years, our data did
not indicate any significant difference in participation according to the
gender: girls seem to be as active as boys.

Further, Figures 1 and 2 below show how the number was changing over
each competition. From Figure 1, we learn that in the first three sets
of the Year 1, the number of boys was higher than number of girls,
but starting from set 7, the numbers are nearly the same in each of
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remaining sets. We can see therefore that girls who decided to continue
their participation were as persistent as boys. A similar trend can be
observed in Year 2 data (Figure 2); while the number of participants is
much lower than in the first year, there were still more boys than girls
in the first set but starting from the set 7, the number of girls and boys
was nearly the same until the end of the competition. It is remarkable
that among the winners of the two 20-round games there were 6 boys
and 5 girls, so nearly the same number of each gender.

The repartition of the number of attempts by gender, according to Table
1 (Year 1 and 2) shows that there was no significant difference in the
number of attempts related to the difficulty levels between girls and
boys. Usually, participants who tried a problem of level 1 (easiest) did
attempt to solve problems of other levels; some difference is only between
the levels one and two for both genders. This observation is particularly
valuable in view of the fact that in a regular classroom setting “teachers
perceived that girls. .. produced fewer exceptional, risk-taking [learners]
than did boys.” (Williams, 2006).

The dynamics of success rates is similar between the girls and the boys
in the first year; also, both genders were more successful on easier levels
(1 and 2) and less in more difficult levels (3 and 4). In the Year 2,
however, the boys have clearly outperformed girls at all levels; with the
same trends between levels 1-2 (easier—better solved) and 3—4 (harder—
less success).

7 Conclusive remarks

The paper explores gender-related data of students’ participation in a
virtual mathematics competition, a marathon. Based on studies that
indicate virtual environments have the potential to attract as many
girls as boys to take part in solving challenging problems, we analysed
participation patterns and success rate at the VMM, according to the
gender. While observing participation over a long period of time during
the first two years of the competition, we found that for both years girls
and boys showed similar patterns when, after first few weeks, a number of
participants who decided to stay remains relatively stable, independently
of success or failure on certain tasks, thus demonstrating risk-taking
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behaviour and persistence for both genders. This similarity between
both genders is consistent with other researchers’ findings (Lloyd et al.,
2005; Williams, 2006) indicating non-significant gender difference at the
junior high level in mathematics as well as equal abilities and interest of
both boys and girls to participate in online activities.

Our preliminary data analysis has several limitations: the major being
that we neither analysed students’ solutions nor conducted interviews
asking them about their level of satisfaction with the game. However,
from the data of the online survey, we learn that both, girls and boys,
seem to express their interest for more challenging mathematics and to
appreciate the experience.

When asked “What motivates you to take part in Marathon?”, students
answered: “desire to improve my mathematical abilities”, “I love math”,
“ ..it [VMM] allows me to practice my mathematics”, “I like the fact
that lot of students compete and the questions come with solutions with
detailed explanations in case of a mistake”, “I like to see how high I
can rank with everybody else. I especially like to getting top 10 and
getting name on the home page”, “I love to solve math problems”, “I
like math and solving problems. Plus I like to compete”, “Challenge by
new, interesting, unusual problems”.

For our question “What do you like about Virtual Mathematical Mara-
thon?”, students’ answers were: “I get to do challenging problems. The
explanations are good.”, “It’s fun and helps me learn more about math”,
“Short problems, ranking system, solutions are available immediately”,
“It’s possible to do it anytime during the week, so I can easily work
around homework”, “That it makes me think and sweat”, “It challenges
me and I love it all. I like seeing the problems every week”. Such
students’ responses are very encouraging and reassuring that the goal of
building a virtual community of junior mathematics problem solvers set
by our team can be achieved by continuing our collaborative work on
the VVM project.

Our future work will use more data and look at more detailed data anal-
ysis including students’ interviews that could allow for a deeper insight
into students’ behaviour and better understanding of their thoughts and
attitudes about the online problem-solving activity.
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Figures 1 and 2: Dynamics of students’ participation: total (3), boys
(2), and girls (1), X - Set number; Y - Number of participants
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1 Introduction

A mathematics competition, as but one among many different kinds
of extracurricular activity, should enhance the teaching and learning of
mathematics in a positive way rather than present a controversy in a
negative way. But why does it sometimes become a controversial issue
for some people as to its negative effect? What are the pros and cons of
this extracurricular activity known as a mathematics competition?

I cannot claim myself to be actively involved in mathematics competi-
tions, but will attempt to share some of my views of this activity gleaned
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from the limited experience gained in the past years. The intention is
to invite more discussion of the topic from those who are much more
experienced and know much more about mathematics competitions®.
To begin with I'd like to state clearly which aspect of this activity
I will not touch on. In the recent decade mathematics competitions
have mushroomed into an industry, some of which are connected with
profit-making or fame-gaining intention. Even if these activities may
have indirect benefit to the learning of mathematics, which I seriously
doubt, an academic discussion of the phenomenon is, mathematically
speaking, irrelevant. Rather, it is more a topic of discussion for its social
and cultural aspect, namely, what makes parents push their children to
these competitions and to training centres which are set up to prepare
the children for these competitions, sometimes even against the liking
of the children? With such a disclaimer let me get back to issues
on mathematics competitions that have to do with mathematics and
mathematics education.

The “good” of mathematics competitions

The only experiences I had of an international mathematics competition
occurred in 1988 and in 1994. T helped as a coach when Hong Kong first
entered the 29" IMO (International Mathematical Olympiad) in 1988
held in Canberra, and I worked as a coordinator to grade the answer
scripts of contestants in the 35" IMO in 1994 held in Hong Kong.
Through working in these two instances I began to see how the IMO
can exert good influence on the educational side, which I had overlooked
before. I wrote up my reflections on the IMO in an article, from which I
now extract the three points on “the good” of mathematics competitions
[4, pp. 74-76].
1. All contestants know that clear and logical presentation is a neces-
sary condition for a high score. When I read their answers I had
a markedly different feeling from that I have in reading the answer
scripts of many of my students. I felt cozy. Even for incomplete or

IThis paper is an extended text of an invited talk given at a mathematics education
forum held in conjunction with the International Mathematics Competition scheduled
on July 24-27, 2012 in Taipei. I thank the organizers, particularly SUN Wen-Hsien of
the Chiu Chang Mathematics Education Foundation, for inviting me to give a talk so
that I can take the opportunity to organize my thoughts and share them with those
who are interested in mathematics competitions.
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incorrect answers I could still see where the writing is leading me.
But in the case of many of my students, despite advice, coaxing,
plea, protest (anything short of threat!) on my part, they write
down anything that comes to their minds, disconnected, disorga-
nized and perhaps irrelevant pieces. One possible reason for this
bad habit is the examination strategy they have adopted since their
school days—write down everything you can remember, for you will
score certain marks for certain key points (even if these key points
are not necessarily presented in a correct logical order!) and the
kind-hearted examiner will take the trouble to sift the wheat from
the chaff! Many undergraduates still follow this strategy. Correct or
incorrect answer aside, the least we can ask of our students should
be clear communication in mathematics (but sadly we cannot).

All contestants know that one can afford to spend up to one and a
half hour on each problem on average, and hence nobody expects to
solve a problem in a matter of minutes. As a result, most contestants
possess the tenacity and the assiduity required for problem solving.
They will not give up easily, but will try all ways and means to
probe the problem, to view it from different angles, and to explore
through particular examples or experimental data. On the contrary,
many of my students, again too much conditioned by examination
techniques since their school days, would abandon a problem once
they discover that it cannot be disposed of readily by routine means.
In an examination when one races against time, this technique may
have its excuse. Unfortunately, many students bring the same habit
into their daily study. Any problem that cannot be disposed of in 3
minutes is a difficult problem and is beyond one’s capacity, hence no
time should be wasted in thinking about it! This kind of “instant
learning” is detrimental to the acquirement of true understanding
and it kills curiosity, thence along with it the pleasure of study.

Some contestants have the commendable habit of writing down not
only the mathematics, but remark on their progress as well. Some
would write down that they could not go from that point on, or
what they did so far seemed to lead nowhere, or that they decided
to try a new approach. I really appreciate the manifestation of
this kind of “academic sincerity”. (It is ironic to note that some
leaders or deputy leaders tried to argue that those contestants were
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almost near to the solution and should therefore be credited with
a higher score. They might be, but they did not, and the good
intention of the leaders or deputy leaders is like filling in between
the lines for the contestants.) On the contrary, some of my students
behave in the opposite way. They write down the given in the
first line (amounting to copying the first part of the question), and
write down the conclusion at the end (amounting to copying the
final part of the question), then fill in between with disconnected
pieces of information which may be relevant or irrelevant, ending
with an unfounded assertion “hence we conclude ...”! I am deeply
disappointed at this kind of insincerity, passing off gibberish as an
answer. I would have felt less disappointed if the student did not
know the answer at all.

I should add one more point about the “good” of mathematics competi-
tions. A young friend of mine and a member of the Hong Kong 2012 IMO
team, Andy Loo, by recounting his own experience since primary school
days with mathematics competitions, highlights the essential “good” of
mathematics competitions as lying in arousing a passion in the young-
ster and piquing his or her interest in the subject. The experience of
participating in a mathematics competition can exert strong influence
on the future career of a youngster, whether he or she chooses to become
a research mathematician or not. For those who finally do not benefit
from this experience for one reason or another, perhaps it is just an in-
dication that they lack a genuine and sustained passion for the subject
of mathematics itself.

2 The “bad” of mathematics competitions

Despite what has been said in the previous section I have one worry
about mathematics competitions which has to do with the way of study-
ing mathematics and doing mathematics, even more so for those who are
doing well in mathematics competitions. Those who do well in math-
ematics competitions tend to develop a liking for solving problems by
very clever but sometimes quite ad hoc means, but lack the patience to
do things in a systematic but hard way or view things in a more global
manner. They tend to look for problems that are already well-posed
for them and they are not accustomed to dealing with vague situations.
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Pursuing mathematical research is not just to obtain a prescribed an-
swer but to explore a situation in order to understand it as much as
one can. It is far more important to be able to raise a good question
than to be able to solve a problem set by somebody else who knows the
answer already. One may even change the problem (by imposing more
conditions or relaxing the demand) in order to make progress. This is,
unfortunately, not what a contestant is allowed to do in a mathematics
competition!

Of course, many strong contestants in various mathematics competitions
go on to become outstanding mathematicians, but many stay at the level
of being good competition problem solvers even if they go on to pursue
mathematics. Many leave the field altogether. That is not a problem in
itself, because everybody has his or her own aspiration and interest, and
there is no need for everybody to become a research mathematician. On
the other hand, it would be a pity if they leave the field because they get
tired of the subject or acquire a lopsided view of the subject as a result
of over-training during the youthful years they spent on mathematics
competitions.

Looking at the history of several famed mathematics competitions we see
a host of winners in the E6tvos Mathematics Competition of Hungary,
started in 18942, went on to become eminent mathematicians [5]; we see
many medalists in the IMO’s, since the event started in 1959, received in
their subsequent career various awards for their important contribution
to the field of mathematics, including the Fields Medal, Navanlinna
Prize, Wolf Prize, ... [6]; we see the same happens for many Putnam
Fellows in the William Lowell Putnam Mathematical Competition in the
USA for undergraduates [8]. On the other hand, the Fields Medalist,
Crafoord Prize and Wolf Prize recipient, YAU Shing-Tung, is noted for
his public view against mathematics competitions. The eminent Russian
mathematician of the last century, Pavel Sergeevich Aleksandrov (1896—
1982), was reported to have once said that he would not have become
the mathematician he was had he joined the Mathematical Olympiad!
An explanation of this polarity in opinions is to be sought in the way

2The role played by the journal Kézépiskolai Matematikai és Fizikai Lapok on
mathematics and physics for secondary school founded in that same year merits
special attention. For more detailed information readers are invited to visit the
website of the journal [7].

45




Mathematics Competitions Vol 26 No 1 2013

how one regards this activity known as a mathematics competition from
the impression one gets in witnessing how it is run.

When I worked as a coordinator in the 35" IMO in 1994 I noticed that
some teams scored rather high marks, but all six contestants in the team
worked out the problem in the same way, indicating solid training on the
team’s part. However, there were some teams, not all of whose members
scored as high marks, but each of whom approached the same problem
in a different way, indicating a free and active mind that works indepen-
dently and imaginatively. It made me wonder: will such qualities like
independence and imagination be hampered by over-training, and if so,
does that mean over-training for mathematics competitions defeats the
purpose of this otherwise meaningful activity? Rather than over-training
would an extended follow-up investigation of a competition problem en-
able the youngsters to better appreciate what mathematical exploration
is about? I am sure many contestants who go on to become outstanding
mathematicians followed this practice of follow-up investigation during
the youthful years they spent on mathematics competitions.

I will now illustrate with two examples. The first example is a rather
well-known problem in one IMO. We will see how one can view it as
more than just a competition problem begging for just an answer. The
other example is on a research topic where the main problem is still
open to this date (as far as I am aware of). We will see how a research
problem differs from a problem viewed in the context of a mathematics
competition problem.

It was natural that I paid some special attention to the questions set in
the 29** IMO, although I did not take part in the actual event in July
of 1988. Question 6 of the 29th International Mathematical Olympiad
reads:

Let a and b be positive integers such that ab + 1 divides a® + b
2, 72

a
h h
Show that P

is the square of an integer.

A slick solution to this problem, offered by a Bulgarian youngster
(Emanouil Atanassov) who received a special prize for it, starts by sup-
0,2+b2

posing that k = 477

is mot a perfect square and rewriting the expres-
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sion in the form
a® — kab+b* =k, where k is a given positive integer. (%)

Note that for any integral pair (a, b) satisfying (x) we have ab > 0, or else
ab < —1, and a? + b? = k(ab+ 1) < 0, implying that a = b = 0 so that
k = 0! Furthermore, since k is not a perfect square, we have ab > 0, that
is, none of a or b is 0. Let (a,b) be an integral pair satisfying (x) with
a > 0 (and hence b > 0) and a + b smallest. We may assume a > b. (By
symmetry we may assume a > b. Note that a # b or else k is a number
lying strictly between 1 and 2.) Regarding (%) as a quadratic equation
with a positive root a and another root a’, we see that a + o’ = kb and
aa’ = b?> — k. Hence a’ is also an integer and (a’,b) is an integral pair
satisfying (*). Since a’b > 0 and b > 0, we have @’ > 0. But

LBk -1 _ a®-1
<

S
Il
IN

< a,
a a a

so that o’ + b < a + b, contradicting the choice of (a,b)! This proves

that ‘fb'_‘;_bf must be the square of an integer. (Having no access to the
original answer script I have tried to reconstruct the proof based on the
information provided by a secondary source [1, p. 505]. The underlying
key ideas are (i) choice of a minimal solution (a, b), and (ii) the expression

(%) viewed in the context of a quadratic equation.)

Slick as the proof is, it also invites a couple of queries.
a2+b2
ab+1
2. The argument by reductio ad absurdum should hinge crucially upon
the condition that k is not a perfect square. In the proof this
condition seems to have slipped in casually so that one does not see
what really goes wrong if k is not a perfect square. More pertinently,
2 2
this proof by contradiction has not explained why aabﬁ_bl must be a

perfect square, even though it confirms that it is so.

1. What makes one suspect that is the square of an integer?

In contrast let us look at a less elegant solution, which is my own attempt.
When I first heard of the problem, I was on a trip in Europe and had a
“false insight” by putting a = N3 and b = N so that

a® +b> = N*(N* +1) = N*(ab +1).
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Under the impression that any integral solution (a, b, k) of k = ‘fb':bf is

of the form (N3, N, N?) I formulated a strategy of trying to deduce from
a? + b? = k(ab + 1) the equality

(a— (362 —=3b+1)) >+ (b—1) = (k—(2b—1)) ((a—(3b2—3b+1))(b—1)+1).

Were I able to achieve that, then I could have reduced b in steps of one
until T got down to the equation a? +b? = k(ab+1) for which a = k = 1.
By reversing steps I would have solved the problem. I tried to carry out
this strategy while I was travelling on a train, but to no avail. Upon
returning home I could resort to systematic brute-force checking and
look for some actual solutions, resulting in a (partial) list shown below.

a 1 8 27 30 64 112 125 216 240 343 418 512
b 1.2 3 8 4 30 5 6 27 7 112 8
k1 4 9 4 16 4 25 36 9 49 4 64

Then I saw that my ill-fated strategy was doomed to failure, because
there are solutions other than those of the form (N3, N, N?). However,
not all was lost. When I stared at the pattern, I noticed that for a fixed
k, the solutions could be obtained recursively as (ay, b;, k;) with

ai11 = ajk; — by, biy1 = aj, kiy1 =k = k.

It remained to carry out the verification. Once that was done, all
became clear. There is a set of “basic solutions” of the form (N3, N, N?)
where N € {1,2,3,...}. All other solutions are obtained from a “basic
solution” recursively as described above. In particular,

a4 b
T oab+1

is the square of an integer. I feel that I understand the phenomenon
much more than if T just learn from reading the slick proof.

[Thanks to Peter Shiu we can turn the indirect proof into a more trans-
parent direct proof based on the same key ideas. Proceed as before and
set ¢ = min(a, b) and d = max(a,b). Look at the quadratic equation

2% — kxe+ (2 — k) =0,
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for which d is a positive root with another root d’. Since d+d’ = kc and
dd' = c® — k < ¢ < de, we know that d’ is an integer less than c so that
d + ¢ < 2c < a+b. By the choice of (a,b), d cannot be positive. On
the other hand,

(d+1)(d +1)=dd + (d+d)+1=(*—k)+ke+1
=+ (c—Dk+1>+1>0.

Therefore, d’ + 1 > 0, implying that d’ = 0. Hence, k = ¢ — dd' = c? is
the square of an integer.]

The next example is a research problem on the so-called Barker se-
quence, which is a binary sequence of length S for which the sequence
and each off-phase shift of itself differ by at most one place of coincid-
ing entries and non-coinciding entries in their overlapping part. Tech-
nically speaking we say that the sequence has its aperiodic autocor-
relation function having absolute value 0 or 1 at all off-phase values.
For instance, 11101 is a Barker sequence of length 5, while 111010 of
length 6 is not a Barker sequence. Neither is 11101011 of length 8 a
Barker sequence, but 11100010010 is a Barker sequence of length 11.
For application in group synchronization digital systems in communi-
cation science R. H. Barker first introduced the notion in 1953. Such
sequences for S equal to 2,3,4,5,7,11,13 were soon discovered and in
1961 R. Turyn and J. Storer proved that there is no Barker sequence
of odd length S larger than 13. A well-known conjecture in combina-
torial designs says that there is no Barker sequence of length S larger
than 13, which has withstood the effort of many able mathematicians
for more than half a century. Although the conjecture itself remains
open, it has stimulated much research in combinatorial designs and in
the design of sequences and arrays in communication science. In order to
better understand the original problem researchers change the problem
and look at the 2-dimensional analogue of arrays or even analogues in
higher dimensions, or other variations such as non-binary sequences and
arrays over an alphabet set with more than two elements, or instead of a
single sequence a pair of sequences (known as Golay complementary se-
quence pairs) satisfying some suitably formulated modification on their
aperiodic autocorrelation functions. In this sense the problem, instead
of looking like an interesting piece of curio, opens up new fields and
generates new methods and techniques which prove useful elsewhere. (I
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would recommend an excellent survey paper to those who wish to know
more about this topic [2]).

3 School mathematics and “Olympiad mathemat-
3 929

1CS

Since many mathematics competitions aim at testing the contestants’
ability in problem solving rather than their acquaintance with specific
subject content knowledge, the problems are set in some general areas
which can be made comprehensible to youngsters of that age group, in-
dependent of different school syllabi in different countries and regions.
That would cover topics in elementary number theory, algebra, combi-
natorics, sequences, inequalities, functional equations, plane and solid
geometry and the like. Gradually the term “Olympiad mathematics”
is coined to refer to this conglomeration of topics. One question that I
usually ponder over is this: why can’t this type of so-called “Olympiad
mathematics” be made good use of in the classroom of school mathe-
matics as well? If one aim of mathematics education is to let students
know what the subject is about and to arouse their interest in it, then
interesting non-routine problems should be able to play their part well
when used to supplement the day-to-day teaching and learning. In the
preface to Alice in Numberland: A Students’ Guide to the Enjoyment of
Higher Mathematics (1988) the authors, John Baylis and Rod Haggarty
remark, “The professional mathematician will be familiar with the idea
that entertainment and serious intent are not incompatible: the problem
for us is to ensure that our readers will enjoy the entertainment but not
miss the mathematical point, ...”

By making use of “Olympiad mathematics” in the classroom I do not
mean transplanting the competition problems directly there. Rather, I
mean making use of the kind of topics, the spirit and the way the ques-
tion is designed and formulated, even if the confine is to be within the
official syllabus. The so-called “higher-order thinking” is (and should
be) one of the objectives in school mathematics as well. Sometimes we
may have underestimated the capability and the interest of our students
in the classroom. It is not true that they only like routine (and hence
usually regarded as “easy”?) material. Perhaps they lack the motivation
to learn because they find the diluted content dull and are tired of it.
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Besides, good questions not just benefit the learners in the classroom;
it is also a challenging task for the teachers to design good questions,
thereby upgrading themselves in the process. In this respect mathemat-
ics competitions can benefit teachers as well, if they try to make use of
the competition problems to enrich the learning experience of their stu-
dents. To be able to better reap such benefit carefully designed seminars
for teachers and suitably prepared didactical material will be helpful [3,
pp. 1596-1597].

There is a well-known anecdote about the famous mathematician John
von Neumann (1903-1957). A friend of von Neumann once gave him a
problem to solve. Two cyclists A and B at a distance 20 miles apart
were approaching each other, each going at a speed of 10 miles per hour.
A bee flew back and forth between A and B at a speed of 15 miles per
hour, starting with A and back to A after meeting B, then back to B
after meeting A, and so on. By the time the two cyclists met, how far
had the bee travelled? In a flash von Neumann gave the answer—15
miles. His friend responded by saying that von Neumann must have
already known the trick so that he gave the answer so fast. His friend
had in mind the slick solution to this quickie, namely, that the cyclists
met after one hour so that within that one hour the bee had travelled
15 miles. To his friend’s astonishment von Neumann said that he knew
no trick but simply summed an infinite series! (I leave it as an exercise
for you to find the answer by summing an infinite series.)

For me this anecdote is very instructive. For one thing, it tells me that
different people may have different ways to go about solving a mathe-
matical problem. There is no point in forcing everybody to solve it in
just the same way you solve it. Likewise, there is no point in forcing
everybody to learn mathematics in just the same way you learn it. This
point dawned on me quite late in my teaching career. For a long time
I thought a geometric explanation would make my class understand lin-
ear algebra in the easiest way, so I emphasized the geometric viewpoint
along with an analytic explanation. I still continue to do that in class to
this date, but it did occur to me one day that some students may pre-
fer an analytic explanation because they have difficulty with geometric
visualization. To von Neumann, who could carry out mental calculation
with lightning speed, maybe an infinite series was the first thing that
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came up in his mind rather than the time spent by the cyclists meeting
each other!

Secondly, both methods of solution have their separate merits. The
method of first calculating when the cyclists met is slick and captures
the key point of the problem, killing it in one quick and direct shot.
The other method of summing an infinite series, which is slower (but
not for von Neumann!) and is seemingly more cumbersome and not as
clever, goes about solving the problem in a systematic manner, resorting
even to brute force. It indicates patience, determination, down-to-earth
approach and meticulous care. Besides, it can help to consolidate some
basic skills and nurture in a student a good working habit.

It makes me think that there are two approaches in doing mathematics.
To give a military analogue one is like positional warfare and the other
guerrilla warfare. The first approach, which has been going on in the
classrooms of most schools and universities, is to present the subject in
a systematically organized and carefully designed format supplemented
with exercises and problems. The other approach, which goes on more
predominantly in the training for mathematics competitions, is to con-
front students with various kinds of problems and train them to look for
points of attack, thereby accumulating a host of tricks and strategies.
Each approach has its separate merit and they supplement and comple-
ment each other. Just as in positional warfare flexibility and spontaneity
are called for, while in guerrilla warfare careful prior preparation and
groundwork are needed, in the teaching and learning of mathematics we
should not just teach tricks and strategies to solve special types of prob-
lems or just spend time on explaining the general theory and working
on problems that are amenable to routine means. We should let the two
approaches supplement and complement each other in our classrooms.
In the biography of the famous Chinese general and national hero of the
Southern Song Dynasty, Yue Fei (1103—-1142) we find the description:
“Setting up the battle formation is the routine of art of war. Manoeu-
vring the battle formation skillfully rest solely with the mind.”

Sometimes the first approach may look quite plain and dull, compared
with the excitement acquired from solving competition problems by the
second approach. However, we should not overlook the significance of
this seemingly bland approach, which can cover more general situations
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and turns out to be much more powerful than an ad hoc method which,
slick as it is, solves only a special case. Of course, it is true that frequently
a clever ad hoc method can develop into a powerful general method or
can become a part of a larger picture. A classic case in point is the
development of calculus in history. In ancient time, only masters in
mathematics could calculate the area and volume of certain geometric
figures, to name just a couple of them, Archimedes (c. 287 B.C.E. — c.
212 B.C. E.) and Liu Hui (3'¢ century). Today we admire their ingenuity
when we look at their clever solutions, but at the same time feel that it
is rather beyond the capacity of an average student to do so. With the
development of calculus since the seventeenth and eighteenth century,
today even an average school pupil who has learnt the subject will have
no problem in calculating the area of many geometric figures.

Let me further illustrate with one example, which is a competition
problem posed to me by the father of a contestant. In isosceles AABC),
where AB = AC and the measure of ZBAC is 20°, D is taken on the
side AC such that AD = BC'. Find 0, the measure of ZADB (see Figure
1). Clearly, if one is to employ the law of sines, then the answer can be

A

l

AB = AC,
LBAC = 20°,

AD = BC,
D _,

Bl c
Figure 1

readily obtained in a routine manner, namely,

_AD _AB - p Be—24Bsin 2,
sin(a¢+#6) sind 2
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where « is the measure of ZBAC, thereby arriving at

sin o
tana =

2sin§ —cosa’

When o = 20°, § = 150°. However, the problem appeared in a pri-
mary school mathematics competition in which the contestant was not
expected to possess the knowledge of the law of sines! Is there a way to
avoid the use of this heavy machinery (for a primary school pupil)? T hit
upon a solution by constructing an equilateral AF BC with F' inside the
given AABC'. Pick a point E on AB such that AE = CD (see Figure
2).

FB=FC=BC
AE =CD

D

=

Bl C

Figure 2

Then it is not hard (by constructing DE, DF') to find out that the
measure of ZDBE is 10° (Exercise) so that § = 180° —20° —10° = 150°.
Why would I throw in the equilateral AF BC as if by magic? It is because
I had come across a similar-looking problem before: In an isosceles
ANABC, where AB = AC and the measure of ZBAC being 20°, points
D and E are taken on AC, AB respectively such that the measure of
/DBC is 70° and that of ZECB is 150°; find ¢, the measure of /BDE
(see Figure 3). By constructing an equilateral AFBC with F' inside the
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AB = AC,

LBAC = 207,
LDBC =707,
LECE =507,

Figure 3

given AABC we can arrive at the answer ¢ = 10° (Exercise). These two
versions are indeed the description of the same situation, because it can
be proved that AD = BC in the second problem. Only knowledge of
congruence triangles suffices. No knowledge of trigonometry is required.
However, if the measure of ZDBC and that of ZECB are not 70° and
50° respectively, then the geometric proof completely breaks down! But
we can still compute the measure of ZBDFE by employing the law of
sines, which is within what an average pupil learns in school. It has
to be admitted that the method is routine and not as elegant, but it
covers the general case and can be handled by an average pupil who has
acquired that piece of knowledge.

4 The pleasure (not pressure!) of mathematics com-
petitions

Before working as a coordinator for the 35" IMO I harboured a distrust
of the value of mathematics competitions. I still harbour this distrust
to some extent, all the more when I witnessed during coordination of
the IMO in 1994 how some leaders or deputy leaders over-reacted out
of too much concern for winning high scores. Putting strong emphasis
on winning/losing will inculcate in the youngsters an unhealthy attitude
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towards the whole activity. Attaching undue importance to the compe-
tition by organizers, teachers, parents, students, is one main source that
may cause distortion of the good intention of mathematics competitions,
not to mention the more “commercial” consequences that take advan-
tage of this misplaced emphasis. Not only does it fail to bring about the
ideal outcome of fostering genuine intrinsic interest and enthusiasm in
the subject, it takes the fun and meaning out of a truly extracurricular
activity as well. Instead of pleasure we are imposing pressure on the
youngsters.

Furthermore, the unilateral strengthening of ability to attain high score
on these so-called “Olympiad mathematics” problems may have adverse
effect on the overall growth of a youngster, not just in terms of academic
pursuit in other disciplines (or in mathematics itself!) but even in terms
of personal development. In particular, I am disappointed at not finding
how mathematics competitions breathe life into a general mathematics
culture in the local scene. On the contrary, many people may be misled
into believing that those difficult “Olympiad mathematics” problems
present the high point in mathematics, and that mathematics is therefore
too difficult to lie within reach of an average person.

5 Concluding remark

On the whole I have great admiration for the talent of those youngsters
who take part in a mathematics competition. What little I accomplish
in trying out those competition problems with all my might they accom-
plish at a stroke, and explain it in a clear and lucid manner. I also have
great respect for the dedication and enthusiasm of those organizers who
believe in the value of a healthy mathematics competition. They are
serving the mathematical community in many ways.

One predominant objection to mathematics competitions is the require-
ment to work out the problems within a fixed time span, say three to
four hours. Some regard this as an act to undermine the intellectual and
intrinsic pleasure of doing mathematics. In a comprehensive paper on
mathematics competitions and mathematics education Petar Kenderov
points out how this requirement disadvantages those creative youngsters
who are “slow workers”. Along with it he points out some important
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features which are not encouraged in a traditional mathematics com-
petition but which are essential for doing good work in mathematics.
These include “the ability to formulate questions and pose problems,
to generate, evaluate, and reject conjectures, to come up with new and
non-standard ideas”. Moreover, he points out that all such activities
“require ample thinking time, access to information sources in libraries
or the internet, communication with peers and experts working on simi-
lar problems, none of which are allowed in traditional competitions.” [3,
p. 1592]

My good friend, Tony Gardiner, who is known for his rich experience in
mathematics competitions and had served as the leader of the British
IMO team four times, after reading my article in 1995 [4] commented
that I should not blame the negative aspects on the mathematics compe-
tition itself. He went on to enlighten me on one point, namely, a math-
ematics competition should be seen as just the tip of a very large, more
interesting, iceberg, for it should provide an incentive for each country
to establish a pyramid of activities for masses of interested students. It
would be to the benefit of all to think about what other activities be-
sides mathematics competitions can be organized to go along with it.
These may include the setting up of a mathematics club or publishing a
magazine to let interested youngsters share their enthusiasm and their
ideas, organizing a problem session, holding contests in doing projects
at various levels and to various depth, writing book reports and essays,
producing cartoons, videos, softwares, toys, games, puzzles, ... . I wish
more people will see mathematics competitions in this light, in which
case the negative impression, which I might have conveyed in this paper,
will no longer linger on!

The good, the bad and the pleasure of mathematics competitions
Are to which we should pay our attention.

Benefit from the good; avoid the bad;
And soak in the pleasure.

Then we will find for ourselves satisfaction!
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The Twin Towers of Hanoi

Jack Chen & Richard Mah € Steven Xia

In a famous puzzle known as the Tower of Hanoi, there are three pegs
in the playing board. There are n disks of different sizes, all stacked on
the first peg, in ascending order of size from the top. The objective is to
transfer this tower to the third peg. The rule is that we may only move
one disk on top of a peg to the top of another peg, and a disk may not
be placed on top of a smaller disk. Figure 1 shows the starting position
when n = 3.

C C )

Figure 1

If n = 1, the task can be accomplished in 1 move: Asz. If n = 2, the
task can be accomplished in 3 moves: AsBAj3. If n = 3, the task can be
accomplished in 7 moves:: A3sBA3;CA;BAj3. The subscript for A shows
the number of the peg to which it is moving. B and C never have choices.

Based on these three simple cases, we conjecture that the minimum
number of moves required to transfer a tower with n disks is 2" — 1. Let
us prove this by mathematical induction. We assume that the minimum
number of moves required to transfer a tower with n disks is 2" — 1. We
now try to transfer a tower with n + 1 disks.

A critical moment occurs when the bottom disk is moving, from the first
peg to the third. In order for this to be possible, the n smaller disks must
form a tower on the second peg. Thus before the move of the bottom
disk, we must transfer a tower with n disks from the first peg to the
second. By the induction hypothesis, this takes 2" — 1 moves. After the
move of the bottom disk, we must complete the task by transferring the
tower on the second peg, consisting of the n smaller disks, to the third
peg. Once again, this also takes 2" — 1 moves. Together with the move of
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the bottom disk, the minimum number is (2" —1)+1+(2"—1) = 2"t 1.
This completes the inductive argument.

We can express the solution to the problem of the Tower of Hanoi using
a different terminology. Let a, be the minimum number of moves to
transfer a tower of height n from one peg to another. From our analysis
above, we see that a,, = 2a,,_1 +1. This result, which defines a,, in terms
of a,_1, is an example of what is called a recurrence relation. Along
with a; = 1, which is called an initial value, they define the sequence
{a,} uniquely.

Using the recurrence relation and the initial value, we can generate
additional terms of the sequence, as shown in the chart below.

a1:1 a2:3 a3:7
a4:15 a5:31 CL6=63
a7 = 127 ag = 255 ag = 511

We now consider a variant which we call the Twin Towers of Hanoi. As
before, there are three pegs in the playing board. There are n disks of
sizes 1, 2, 3, ..., n. Those of odd sizes are stacked on the first peg, and
those of even sizes are stacked on the third peg. On both pegs, the disks
are in ascending order of size from the top. The rule is the same, in that
we may only move a disk on top of a peg to the top of another peg, and
a disk may not be placed on top of a smaller disk. Figure 2 illustrates
the starting position of the case n = 6.

3 4
( 5 ) ( 6 )
Figure 2

The objective is to have the two towers trade places. As in the Tower of
Hanoi, a critical moment occurs when disk 6 is moving, from the third
peg to the first. In order for this move to be possible, the 5 smaller disks
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must form a tower on the second peg, as illustrated in Figure 3. Thus
before the move of disk 6, we must merge the disks 1 to 5 into a tower
on the second peg.

Figure 3

We have identified an intermediate objective for the Twin Towers of
Hanoi, that of merging the n disks on the second peg. Figure 4 illustrates
the case n = 5.

3 2

C 5 ) C 4 )
3 C 1

( 5 ) C 2 ) C 4 )
N 1 3

( 5 ) C 2 ) C 4 )
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Figure 4

We first merge disks 1 and 2 on the second peg to pave the way for the
move of disk 3. After disk 3 moves on top of disk 4, we transfer disks
1 and 2 on top of disk 3 to pave the way for the move of disk 5. After
disk 5 moves to the second peg, we transfer disks 1, 2, 3 and 4 on top of
it to complete the task.

In general, we merge disks 1, 2, 3, ..., n — 3 on the second peg, move
disk n — 2 on top of disk n — 1, transfer disks 1, 2, 3, ..., n — 3 on top
of disk n — 2, move disk n to the second peg and transfer disks 1, 2, 3,
..., n—1 on top of disk n.

This means that if we let b, be the minimum number of moves for
merging n disks, then we have b,, = b,_3s+ 1+ ap_3+ 1+ a,_1. Since
an = 2" — 1, we have b, = b,,_3 + 52773,

This is a three-step recurrence relation since b,, is not defined in terms
of b,_1 but in terms of b,_3. Hence we need three initial values. It is
not hard to determine by, by and b3, and generate the chart of values
below.

by =1 by =2 by =5
by =11 bs = 22 be = 45
by = 91 by = 182 by = 365
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We notice that b, is either equal to 2b,,_1 or 2b,_1 + 1, but it is not
immediately clear what the general formula for b, is.

We also notice that the numbers in the last column so far are all multiples
of 5. Dividing them by 5 yields the quotients 1, 9 and 73. In the table of
values of a,, given earlier, we notice that the numbers in the last column
there are all multiples of 7. Dividing them by 7 yields the quotients 1, 9
and 73 also. Thus we suspect that b,, is roughly %an.

Say=1-2 Sap=2+1 Za3 =5
Sag=11-2 Sas =22+ 1 Sag =45
Sar=91-2 Sag =182+ 1 Sag = 365

Thus we conjecture that b, is equal to %an rounded off to the nearest
integer. More specifically, we conjecture that

(2" —1) when n =0 (mod 3),
(2" —2)+1 whenn=1 (mod 3),
(2" —4)+2 whenn=2 (mod 3).

by, =

ENISUEN IS ([

We now use mathematical induction to prove these three formulae. First,
let n = 0 (mod 3). We have 2(2° —1) = 5 = bs. Suppose b, = 2(2" — 1)
for some n > 3. Then

bn+3:bn—5'2n
=2@2"-1)+5-2"
=2(2"—1+7-2")

%(2n+3 )

The other two formulae can be proved in an analogous manner.

Returning to the main task of having the two towers trade places. Let the
minimum number of moves required be ¢,, where n is the total number
of disks. We have already identified the critical moment when disk n
moves, either from the first peg to the third or vice versa. In order for
this move to be possible, the n — 1 smaller disks must form a tower on
the second peg. This merger requires b,_; moves. After the move of
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disk n, we must disperse the merged tower. This also takes b, _; moves
since the process is reversible. It follows that ¢, = 2b,,_1 + 1. We have
the chart of values below.

61:1 02:3 63:5
cy =11 cs = 23 cg = 45
cr =91 cg = 183 cg = 365

It follows that ¢, and b, are identical, except for n = 2 (mod 3), when
they differ by 1. It may be interesting to discover what may have caused
this discrepancy.

The method of mathematical induction allows us to prove that the
specified minimum numbers of moves are indeed correct, but it does
not explain why they should have those values. Moreover, we have to
have an idea what these values are before we can apply the inductive
argument. We have resorted to observing patterns and making inspired
guesses. We would like to have a more formal and systematic approach
to solving recurrence relations.

Let us revisit a,, = 2a,_1 + 1 with initial value a; = 1. Actually, ag =0
will serve just as well. Note that the recurrence relation is true not
just for one value of n, but for all values of n. In other words, all the
statements below are true. This is called an iteration.

an = 2ap-1+1,

p-1 = 2ap_2+ ]-a
anp—2 = 2(1”_3 + 15
as = 2a1+1,
a; = 2&0 + ].

Multiplying each by a power of 2 one higher than the preceding one, we
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obtain the following statements.

an = 2ap-1+1,
20p-1 = 22@77,72 +2

2%a,_5 = 2%a,_3+ 2%,
2n—2a2 — 2n—la1+2n—2’
2" lay = 2"ag 42"

Addition results in massive cancellations, leading to

ap =2"ag+1+24+22 4 ... gon"2pon-t_on_ ]

We now turn to the recurrence relation b,, = b,,_3 + 5 - 23 with initial
values by = 0, by = 1 and by = 2. We consider only n = 0 (mod 3) as
the other two cases are analogous.

by = bp—3+5- 2n—37
bn—3 = bng+5-2"7°,
bn—6 = bn—9 +5- 2n79’

)

bg = b3+5-23,
by = by +5-2°

Addition yields

bp = by +5(1+2°+20 4 ... +2"79)
52" —1) 5
R . 1 )
2 -1 7( )

There is an alternative approach which is equally formal and systematic.
Rewriting this recurrence relation as a, — 2a,_1 = 1, we consider the
associated recurrence relation a, — 2a,_1 = 0. The simpler one is said
to be homogeneous because all terms involve the sequence {a,}. The
original recurrence relation is said to be non-homogeneous since it has a
non-zero term not involving the sequence {ay}.
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We may solve the homogeneous recurrence relation by setting a,, = ="
for some non-zero number . Then 2™ — 22"~ ! = 0. Since x # 0, we can
simplify to z — 2 = 0 so that a,, = 2" is a solution to the homogeneous
recurrence relation. The general solution is a,, = K2" for some constant
K. This value will eventually be determined by the initial value.

All we need now is a particular solution to the non-homogeneous recur-
rence relation. Since the non-homogeneous term is 1, it is reasonable to
guess that a,, = A for some constant A. It is called an (as yet) undeter-
mined coefficient. Now 0 = a,, —2a,_.1 = A—2A = —A. Hence A = —1
and the particular solution is a,, = —1.

Combining the two partial solutions, we now have the general solution
to the non-homogeneous recurrence relation, namely, a, = K2" — 1.
Setting n = 0, we have 0 = g9 = K20 — 1 = K — 1. It follows that
K =1, so that a, =2" — 1.

‘We now turn to the recurrence relation b,, —b,,_3 = 5-2". The associated
homogeneous recurrence relation is b, — b,_3 = 0. Setting b,, = z™, we
have 2™ — 2™~3 = 0 so that

0=2°-1=(z—1)(z* +2+1).

The first factor yields the root z = 1 while the second factor yields com-

plex roots %\/‘;’i, where i is a root of the quadratic equation z? + 1 = 0.

We denote 1+T‘/§1 by w. It satisfies w? = 1_7@, w? =1and w?+w+1 = 0.
Thus the general solution of the aassociated homogeneous recurrence re-
lation is bn = Kl + ng” + K3w2".

We need a particular solution to the non-homogeneous recurrence rela-
tion. Since the non-homogeneous term is 5 - 2", it is reasonable to guess
that b, = A2" for some constant A. Then A2" = A2"3 4+ 5.2773,
Canceling the factor 273 yields 84 = A + 5. Hence A = % so that
b = 327,

It follows that the general solution to the non-homogeneous recurrence
relation is b, = %2” + K1 + Kow™ + K3w?®. Using the initial values
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bo =0, by =1 and by = 2, we have

5
O:b0:?+K1+K2+K3a
1:b1:7+K1+K2w+K3w,

20

2=1by = = Ky + Kow? + Kaw.
It follows that
Ki+ Ko+ Kz=-—
K1+ wKy +w?Kz = —
K+ w?Ksy + wK3 = —
We can solve this system of three equations in three unknowns and obtain

Ky = —%, Ky = —22—1 — %w and K3 = —% — %wz. However, we do not
really need these values.

For n =0 (mod 3), we have

5
bo = 22"+ K1+ K + K

5 )
:72,”—7
7 7
)
= (2" - 1).
@ - 1)

For n =1 (mod 3), we have

5
by = =2" + Kq + Kow + K3w?

7

5 3
— Zon _ 2

7 7
— Sn 941
-3 _
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For n =2 (mod 3), we have

5
by, = ?2"+K1+K2w2+K3w
5 6
= —2"——
7 7
5 n
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Tournament of Towns
Selected Problems, Spring 2012

Andy Liu

1. Five students have the first names: Clark, Donald, Jack, Robin
and Steven, and have the last names, in a different order: Clarkson,
Donaldson, Jackson, Robinson and Stevenson. Clark is 1 year older
than Clarkson, Donald is 2 years older than Donaldson, Jack is 3
years older than Jackson and Robin is 4 years older than Robinson.
Who is older, Steven or Stevenson and what is the difference in
their ages?

Solution:

Let Steven be n years older than Stevenson. The total age of Clark,
Donald, Jack, Robin and Steven must be the same as the total
age of Clarkson, Donaldson, Jackson, Robinson and Stevenson,
because these are the same five people. Hence 14+2+3+4+4n =20
so that n = —10. It means that Steven is 10 years younger than
Stevenson.

2. The game Minesweeper is played on a 10 x 10 board. Each cell
either contains a bomb or is vacant. On each vacant cell is recorded
the number of bombs in the neighbouring cells along a row, a
column or a diagonal. Then all the bombs are removed, and new
bombs are placed in all cells which were previously vacant, and the
numbers of neighbours are recorded as before. Can the sum of all
numbers on the board now be greater than the sum of all numbers
on the board before?

Solution:

Represent each cell by a vertex and join two neighbouring cells by
an edge. An edge is called a scoring edge if it joins a bomb cell and
vacant cell, since it will contribute 1 to the number recorded on the
vacant cell. An edge which joins two bomb cells or two vacant cells
is non-scoring. Hence the sum of the recorded numbers is equal
to the number of scoring edges. After the transformation of the
board, a scoring edge remains a scoring edge, and a non-scoring
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edge remains a non-scoring edge. Hence the sum of all the numbers
on the board before must be equal to the sum of all the numbers
on the board after.

. A circle touches sides AB, BC and C'D of a parallelogram ABCD
at points K, L and M respectively. Prove that the line K L bisects
the perpendicular dropped from C to AB.

Solution:

Let KL intersect the perpendicular CH dropped from C to AB
at P. Let the extensions of KL and DC intersect at Q). Now
LK LM = 90° since KM is a diameter of the circle. Hence QLM
is a right triangle, so that its circumcentre lies on QM as well as on
the perpendicular bisector of LM. Now C'L = CM since both are
tangents from C' to the circle. Hence C' lies on the perpendicular
bisector of LM. Being on QM, C' must be the circumcentre of
triangle QLM . This means that QC' = CM. Now PC is parallel
to KM. By the Midpoint Theorem, PC = %KM = %HC’, which
is equivalent to the desired result.

B H K A
P
L
Q C M D

. Among 239 coins which look the same, there are two counterfeit
coins of the same weight, and 237 real coins of the same weight
but different from that of the counterfeit coins. Determine in three
weighings on a balance whether the counterfeit coins are heavier
or lighter than the real coins. It is not necessary to identify the
counterfeit coins.

Solution:
Put 80 coins into group A, 79 coins into each of groups B and C,
and we have one coin left. If we add this coin to group B, we call
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the expanded group B*. C™ is similarly obtained from C. In the
first two weighings, we try to balance group A against group BT
and group A against group CT. We consider three cases.

Case 1. We have equilibrium both times.

This means that each group has one counterfeit coin, so that the
extra coin must be counterfeit. The coins in both groups B and C
are real. Weigh one of them against the known counterfeit coin,
and that will tell us the desired answer.

Case 2. We have equilibrium only once, say between A and BT.

Either each has a counterfeit or neither has a counterfeit coin.
Divide the coins in A into two subgroups of 40 and weigh them
against each other. If we have equilibrium, A does not have any
counterfeit coins, and neither does B, which means C has both of
them. If we do not have equilibrium, A has a counterfeit coin, and
so does BT. This means that the extra coin is real and C* does
not have any counterfeit coins. In either situation, the weighing
between A and C™ tells us the desired answer.

Case 3. We have no equilibrium.

We claim that either A is heavy both times or A is light both
times. Suppose to the contrary that BT is heavier than A and
A is heavier than CT. Then they must have two, one and zero
counterfeit coins in either order. However, if A has one counterfeit
coin, it is impossible for either B or C to have two of them. This
justifies our claim. So either both BT and C* have no counterfeit
coins or both have one. Divide the coins in BT into two subgroups
of 40 and weigh them against each other. This will tell us the
desired answer.

. An infinite sequence of numbers aq, as,as,... is given. For any
positive integer k, there exists a positive integer ¢ = ¢(k) such that
af = G+t = A4t = ... Is this sequence necessarily periodic?

Solution:

The result is not true, and here is a counter-example. For any
positive integer k, let ax be the highest power of 2 which divides
k. Thus the sequence is 0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,... The
choice t(k) = 2%T! gatisfies the given condition and yet the se-
quence is not periodic as the maximum size of the terms increases
without bound.
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6. I is the incentre of triangle ABC. A circle through B and [
intersects AB at F' and BC at D. K is the midpoint of DF.
Prove that ZAKC' is obtuse.

Solution:

Let ACDF be a convex quadrilateral. Let K and M be the
respective midpoints of DF and AC. We claim that KM <
%. Let L be the midpoint of AD, as shown in the diagram
below on the left. By the Midpoint Theorem, KL = 4E and
LM = €2. By the Triangle Inequality, KM < KL + LM =
AF;CD

, justifying our claim. B

D

A M C A E C

Let E be the point on AC such that AE = AF', as shown in the
diagram above on the right. Let LAEI = « and LZCEI = f,
so that a« + f = 180°. Since AI bisects LZCAB, triangles AET
and AFI are congruent. Hence ZAFI = « and ZBFI = §.
Since BDIF is cyclic, /BDI = « and ZCDI = 8 = ZCEI.
Hence triangles CDI and CFEI are also congruent, so that we
have CD = CFE. Let M be the midpoint of AC. By our earlier
claim, KM < AEFCD — AB2CE — AC Hence K lies within the
semicircle with dlameter AC, Wthh 1mphes that ZAKC' is obtuse.

7. Peter chooses some positive integer a and Paul wants to determine
it. Paul only knows that the sum of the digits of Peter’s number is
2012. In each moves, Paul chooses a positive integer  and Peter
tells him the sum of the digits of |z — a|. What is the minimal
number of moves Paul needs to determine Peter’s number for sure?

Solution:
We claim that Paul needs at most 2012 questions. Let Peter’s
number have n non-zero digits a1, asz, ..., a, from right to left,

with n > 1 and a; +as+---+a, = 2012. For 1 < k < n, let by be
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the number of adjacent Os to the right of a;. Paul will carry out the
following steps. In Step 1, Paul determines b; using one question.
He chooses 1, and Peter’s answer must be 2011 4+ 9b;. In step k,
2 < k < n, Paul will determine a;_; and b using ar_; questions.
Paul chooses a number which has a 2 in front of the known digits
of Peter’s number. If Peter’s answer is 2010, Paul replaces the
2 by the 3. Continuing this way, when the first digit of Paul’s
choice is ax_1, Peter will answer 2013 — ay_1. However, when Paul
replaces ax—1 by ar—1 +1, Peter’s answer will be 2012 — a1 +9by.
Now only a,, is left, but Paul does not know that unless a,, = 1.
However, by the time he asks the (a,, — 1)-st questions here, he will
get 0 as a response and knows Peter’s number. The total number
of questions needed is 1 +a; +as + -+ + (a, — 1) = 2012. This
justifies our claim. We now prove that Peter can force Paul to use
2012 questions, by constructing his number one step at a time. Let
b1 be the number of digits in Paul’s first choice. Peter chooses the
last by digits of his number to be 0 and put a 1 in front, referred
to as ay. His response will be 2011 + 9b;. Paul can only tell that
Peter’s number ends in exactly b; zeros. Paul’s next choice must
be a number with more digits. Peter adds by zeros in front of a;
to match the length of Paul’s choice, and put another 1 in front,
referred to as as. Paul can only determine the last by + 14 b7 digits
of Peter’s number, plus the fact that the digit in front is non-zero.

Continuing this way, we have a; = as = - -+ = agp12 = 1, and Paul
needs one question to determine each of by, bs, ..., bag12.
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