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Dept. of Algebra and Geometry
Faculty of Science
Palacký University 
Tr. 17. Listopadu 12
Olomouc
772 02
Czech Republic

Email: svrcek@inf.upol.cz

©2011 AMT Publishing,  AMTT Limited ACN 083 950 341



MATHEMATICS COMPETITIONS   VOLUME 24 NUMBER 2 2011 

CONTENTS	 PAGE

WFNMC Committee 	 1

From the President	 4

From the Editor	 7

The Passing of a Maestro	 9	

Announcements	 11

The Italian Team Competition	 14
Giuseppe Rosolini (Italy)

The Iberoamerican Mathematics Competition for University Students	 23
Maria Losada (Colombia)

A New Theorem on any Right-angled Cevian Triangle	 29
G. W. Indika Shameera Amarasinghe (Sri Lanka)

The Problem from a Mathematical Camp	 38
Pavel Calábek and Jaroslav Švrček

The Difficulties in the Search of Solutions of Functional Inequalities	 46
Peter Samovol (Israel), Valery Zhuravlev (Russia) and Tal Kagalovsky (Israel)

The 52nd International Mathematical Olympiad, Amsterdam,  
The Netherlands, 2011	 62

Tournament of Towns	 72	
Andy Liu (Canada)



Mathematics Competitions Vol 24 No 2 2011

World Federation of National Mathematics

Competitions

Executive

President: Professor Maŕıa Falk de Losada
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The aims of the Federation are:–

1. to promote excellence in, and research associated with,

mathematics education through the use of school math-

ematics competitions;

2. to promote meetings and conferences where persons inter-

ested in mathematics contests can exchange and develop

ideas for use in their countries;

3. to provide opportunities for the exchanging of information

for mathematics education through published material, no-

tably through the Journal of the Federation;

4. to recognize through the WFNMC Awards system persons

who have made notable contributions to mathematics edu-

cation through mathematical challenge around the world;

5. to organize assistance provided by countries with devel-

oped systems for competitions for countries attempting to

develop competitions;

6. to promote mathematics and to encourage young mathe-

maticians.
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From the President

Once again I have been given the delightful opportunity of putting before
our readers an enticing menu of writings, activities and events to refresh
the spirit and set the mind to action.

The Journal

The present issue of the WFNMC journal once again offers a prime choice
of articles that reflect a great variety of problems, competitions, puzzles,
and other activities designed to challenge and entertain us. We invite
our readers to peruse the issue thoroughly and take full advantage of all
it has to offer.

Miniconference

WFNMC has organized a miniconference for July 7, 2012, at COEX,
Seoul, Korea, the same venue that will host ICME-12 from July 8–15.
We are looking forward to contributions from our members and readers.
In particular, we hope to provide a star-studded group of speakers who
will enlighten and engage all attendees with talks on new competitions,
problem creation, development of students’ and teachers’ mathematical
thinking through challenging mathematics, and new resources in chal-
lenging mathematics for students and teachers.

Please consult the third announcement and call for papers in this issue of
the journal, and share your experience and analyses with other members
of the Federation.

ICME-12

ICME-12 has recognized challenging mathematics as a field of research
and action in mathematics education; the activity of ICME-12 pertaining
to challenge will be centered on the sessions of Topic Study Group 34:
The role of mathematical competitions and other challenging contexts in

the teaching and learning of mathematics.
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WFNMC will have two ninety-minute sessions at ICME-12 during which
there will be time for lively academic sessions as well as a business
meeting. Papers submitted for the miniconference will also be considered
for presentation at the academic session of the Federation during ICME-
12.

Our students

For all of us who work with competitions, museums, exhibitions, work-
shops, summer schools, fairs and the like, challenging elementary mathe-
matics is elegant and engaging, and stepping up to meet these challenges
is a totally satisfying experience. Yet for most of us, the focus is on our
students, on letting them feel the power and see the beauty, on giving
them a very special experience. Invited by Romas Kasuba to address
the participants in the Lithuanian mathematics competitions last year,
I tried to put into written words what I think we would all like to say
to these fantastic young students. This is what resulted.

“It would be of great interest to me to know what thoughts are running

through your minds at this time.

There are so many reasons for taking part in problem-solving competi-

tions in mathematics, and so many different benefits to be expected. I

will name only a few; and I invite you to share your own thoughts with

me, as well as with your families, teachers, and friends.

There is the element of fun. Challenges, among them those found in

the problems of math competitions, almost always are taken up because

they have an element of fun in them. Fun can lead to engagement, and

develop into a passionate calling.

There is the element of surprise. Surprises make life interesting, jogging

our routines; persons, places, facts, problems that we already know can

be precious to us, but surprises make us adjust our attitudes and actions

in new ways that enrich our lives.

There is the element of beauty, a beautiful problem created by a beautiful

mind, is more than satisfying, it is joyful and uplifting. And so is a

beautiful solution such as those many of you will create and that will fill

your teachers with pride.
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There is the element of learning, learning about mathematics, about what

our mathematical mentors expect of us, about what we are capable of

doing, about adjusting our own expectations.

There is the element of belonging, belonging to a tradition of many mil-

lennia, a human endeavor, a community of thinkers, creators of knowl-

edge and understanding.

There is the element of truth. When you are facing a problem there

is no way to bluff, to fool yourself or others, you are alone, constantly

assessing yourself and your own progress, you have a real opportunity to

take Shakespeare’s wonderful advice: ‘This above all: to thine ownself be

true, and it must follow as the night the day, thou canst not then be false

to any man.’

I am sure you all have your eyes on the future, your future, the future

of your country, friends and family. You have the power to open up

new possibilities by enjoying all of these fine elements that taking part

in mathematics competitions and solving challenging problems have in

store for you. My best wishes for all, wishes that all of you will find in

this singular experience everything that you are looking for and more!”

Maŕıa Falk de Losada

President of WFNMC

Bogotá, December 2011
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From the Editor

Welcome to Mathematics Competitions Vol. 24, No. 2.

First of all I would like to thank again the Australian Mathematics
Trust for continued support, without which each issue (note the new
cover) of the journal could not be published, and in particular Heather
Sommariva, Bernadette Webster and Pavel Calábek for their assistance
in the preparation of this issue.

Submission of articles:

The journal Mathematics Competitions is interested in receiving articles
dealing with mathematics competitions, not only at national and inter-
national level, but also at regional and primary school level. There are
many readers in different countries interested in these different levels of
competitions.

• The journal traditionally contains many different kinds of arti-
cles, including reports, analyses of competition problems and the
presentation of interesting mathematics arising from competition
problems. Potential authors are encouraged to submit articles of
all kinds.

• To maintain and improve the quality of the journal and its use-
fulness to those involved in mathematics competitions, all articles
are subject to review and comment by one or more competent ref-
erees. The precise criteria used will depend on the type of article,
but can be summarised by saying that an article accepted must
be correct and appropriate, the content accurate and interesting,
and, where the focus is mathematical, the mathematics fresh and
well presented. This editorial and refereeing process is designed to
help improve those articles which deserve to be published.

At the outset, the most important thing is that if you have anything
to contribute on any aspect of mathematics competitions at any level,
local, regional or national, we would welcome your contribution.
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Articles should be submitted in English, with a black and white photo-
graph and a short profile of the author. Alternatively, the article can
be submitted on an IBM PC compatible disk or a Macintosh disk. We
prefere LATEX or TEX format of contributions, but any text file will be
helpful.

Articles, and correspondence, can also be forwarded to the editor by mail
to

The Editor, Mathematics Competitions

Australian Mathematics Trust
University of Canberra Locked Bag 1
Canberra GPO ACT 2601
AUSTRALIA

or to

Dr Jaroslav Švrček
Dept. of Algebra and Geometry
Palacky University of Olomouc
17. listopadu 1192/12
771 46 OLOMOUC
CZECH REPUBLIC

jaroslav.svrcek@upol.cz

Jaroslav Švrček

December 2011
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The Passing of a Maestro

Another colleague has left us . . .

Luis Davidson San Juan, 1921–2011

Having had the privilege of counting him among our friends and col-
laborators, it is our sad duty to inform our readers of the passing in
the month of November in Havanna (La Habana) of Luis Davidson San
Juan.

Luis was born in Havanna, Cuba, on September 10, 1921. At the Univer-
sidad de La Habana he studied Physical and Mathematical Sciences, and
in 1944 obtained his PhD. In 1950 he was part of the Cuban delegation
at the International Congress of Mathematicians organized at Harvard
University, beginning his work on the international scene.

Beginning in 1963 Luis Davidson was among the organizers of mathe-
matics competitions in Cuba; he first participated in the IMO as leader

With then Australian Prime Minister Robert Hawke,
Peter O’Halloran and others at the Closing Ceremony

of the International Mathematical Olympiad, Australia, July, 1988.
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of the Cuban delegation in 1971. Luis was a member of the IMO Site
Committee and designated its Vice President in 1988.

The OEI (Organización de Estados Iberoamericanos para la Ciencia, la
Culture y la Educación) awarded Luis the distinction of Maestro Founder
of Mathematics Competitions in Ibero-America.

With José Fernández, the Cuban Minister of Educación,
at the IV Iberoamerican Mathematics Olympiad, held in Cuba in 1989.

Luis was present at the First Congress of WFNMC in 1990, in Waterloo,
and in 1992 at ICME-7 in Quebec, he received the Paul Erdös Prize from
WFNMC.

Luis Davidson San Juan was the author of many books. His last, pub-
lished in 2010, Equations and mathematicians, is part of a series he had
planned to write and tells the story of mathematicians through the prob-
lems they posed and solved.

He will be missed.

Maŕıa Falk de Losada

Bogotá

COLOMBIA
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Announcements

Third Announcement and Call for Papers

WFNMC miniconference

In conjunction with ICME12 which will be held in Seoul, Korea, from
8–15 July 2012, WFNMC will hold a miniconference on July 7 at the
same venue, COEX Seoul.

Call for Papers

The deadline for the reception of papers is February 8, 2012. These
should be submitted in full, be of no more than 12 pages in length (single
space, Times New Roman, 12pt) and be accompanied by an abstract of
no more than 40 words.

Of special interest are papers dealing with the following topics:

• problem creation;

• the development of students’ ability to think mathematically;

• the development of teachers’ ability to think mathematically and
creatively and of their capacity to create and/or use challenging
problems in their teaching; and

• new resources for the student and the teacher (journals, books,
webpages, etc.).

Results of the review process will be announced by 1 March 2012.

Second Announcement

VII WFNMC Congress

The VII Congress of WFNMC will take place in Beijing in 2014. Please
make sure to put the Congress on your schedule and make Beijing your
destination for the summer of 2014.

Further information and a call for papers will appear in subsequent issues
of the WFNMC Journal.
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Third Announcement

Topic Study Group 34, ICME 12, Seoul, Korea

WFNMC Vice President, Ali Rejali, and President, Maŕıa de Losada,
have been named co-chairs of Topic Study Group 34: The role of mathe-

matical competitions and other challenging contexts in the teaching and

learning of mathematics at ICME12.

The group will address the following areas of research and action:

• the development of strategies and tools for incorporating challeng-
ing mathematics in schools and regular classes and the way in
which these are given direction by teachers, text books, educational
systems and curricula, on extracurricular activities in schools (or
in other contexts and aspects not listed here) as well as on research
focusing on their impact;

• challenge developed for implementation beyond the classroom such
as journals, books, competitions at different levels—including the
different regional and international Olympiads—exhibitions, math-
ematics clubs, mathematics houses, lectures, camps, corresponding
programs, mathematics days, fairs, family programs, as well as re-
search regarding the above items and similar tools;

• preparation programs for competitions and different types of recog-
nition given to outstanding students and teachers;

• innovative competitions or other innovative mathematical chal-
lenges throughout the world;

• new activities and research on programs that provide mathematical
challenge, with students as their main focus;

• analysis of the ways in which competitions and other challenging
activities contribute to the motivation of students towards the
study of mathematics;

• analysis of relationships between technological environments and
challenging tasks, and of the impact of challenges focusing on stu-
dents, classroom practice, assessment, as well as research address-
ing such analysis;
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• analysis of ways of providing an enveloping challenging atmosphere
for students to learn mathematical subjects and to be engaged in
mathematical studies;

• follow up research on the discussions which took place at previous
ICME’s, especially DG 19 at ICME 11.

(http://dg.icme11.org/tsg/show/20).

Make ICME 12 and TSG 34 part of your summer 2012 agenda!
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The Italian Team Competition

Giuseppe Rosolini

Giuseppe Rosolini obtained his doctor-

ate in Mathematics at the University of

Oxford in 1986 with a thesis on categor-

ical models of computation, and holds

the chair of mathematical logic at the

University of Genova. His main re-

search interests are in logic, proof the-

ory, and category theory.

He is past president of AILA, the Ital-

ian Association of Logic. As a member

of the Italian Olympic Committee of

UMI, the Italian Mathematics Union,

he has been in charge of the organiza-

tion of the Italian Team Competition

since its inception.

1 Introduction

It is the week after Labour Day. Cesenatico, one among the many beau-
tiful spots along the Italian Adriatic Coast, is bustling with high school
students talking about mathematics. They have just come from all over
the country to compete in the final round of the Italian Mathematical
Olympiad and in that of the Italian Team Competition.

The Italian Mathematical Olympiad is the penultimate stage in the series
of individual competitions organized by the Italian Olympic Committee
to determine the six Italian representatives to the International Mathe-
matical Olympiad (IMO). Some 300 competitors, after passing the local
selections, will take part in it. It will run in the morning on Friday, the
results will be announced on Sunday.

The Italian Team Competition is the final stage of another mathematical
contest which involves high school teams. It consists of two rounds:

14
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semifinals are on Friday afternoon, and on Saturday there is the final
round in the morning, and the award ceremony in the afternoon. Some
700 students are involved in this: those on the teams, many of whom
also take part in the individual contest, and their supporters.

It was some twelve years ago when Massimo Gobbino, deputy leader of
the Italian team at the IMO, had the idea of organizing a leisure compe-
tition for teams of seven individual contestants trying to keep them busy
in the two days’ long wait for the results of the individual competition.
And two years later, together with Alberto Arosio, another member of
the Italian Olympic Committee, who thought of adding a twist to it:
pride and enthusiasm. Instead of grouping individual contestants at Ce-
senatico, they invited high schools to perform in the team competition
with a team of their students.

The idea caught on: after three years, there were some 100 schools who
took part in the local contests to gain access to the final round of the
Team Competition in Cesenatico.

In 2011, more than 700 Italian high schools took part in one of the 30
local contests, held in mid-March throughout the country. At each school
the students interested to make the team train together in winter with
the help of teachers and trainers; in many schools it is a group of more
than 20 students.

And the teams from 96 high schools are present in Cesenatico to compete
in one of the three semifinals on Friday afternoon. In each semifinal,
32 teams will compete for 10 places in the final.

2 The team competition

The team competition (Gara di Matematica a Squadre, in Italian) takes
place in a indoor stadium, in front of spectators and fans who can—and
usually do—cheer for their team.

The seven students on a team sit together at an assigned table. They
can collaborate, using only pen and paper, to solve 24 problems. Each
problem requires an integral answer between 0 and 9999—more precisely,
a sequence of four digits. The jury will not want to know by which means

15
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Figure 1: The stadium, the day before

the answer was obtained: they shall simply verify if it is correct. If that
is so, the team gains points; otherwise, they will lose points, but they
can continue to work on the problem to find the correct answer. After
120 minutes from the beginning of the contest, the team with the top
score wins.

Physical contact between teams is kept to the minimum: only a specified
member of a team, the messenger, can deliver the team’s answers to the
jury, all others cannot move away from the team’s table. But among the
messengers, anything goes.

The scores are computed and updated in real time from the begin-
ning to the end, and are communicated to the messengers by computer
displays—as well as to those on the stands by computer projections—so
that everybody at every moment knows which team is ahead and how
far behind the others are trailing.

A team need not solve the 24 problems in sequence; an answer to any
of the 24 problems can be given at any moment during the competition.

16
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Figure 2: A messenger delivers an answer to the jury, others check results
on the computer displays

The problems are of various levels of difficulty and, of course, of different
kinds, but the score for a correct answer is the same for each problem
at the beginning of the contest: 20 points. At each tick of a minute, the
score of an unanswered problem increases by 1 point. And an incorrect
answer will push up the score of an unanswered problem by 2 points.
Other computer displays inform the teams (but not the public) about
the updated scores of the 24 problems and about each team’s answering
record.

Each team has a captain, usually the best in mathematics on the team.
A captain should decide which teammates tackle which problems in the
list. But, after a few minutes into the game, it is the messenger who
really develops the team strategy because he/she is the only member
of the team who can figure out, from the displays, which problems the
other teams tackle and how well they perform.

17
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Figure 3: A computer projection

3 The final: some problems, some results

On Saturday, at 9 o’clock the final for the Team Competition begins.
There are four guest teams from the Czech Republic, Hungary, Romania,
and the United Kingdom.1

At the start of the competition, each messenger runs to the team’s
table with seven copies of 24 problems. To ensure that all answers are
considered the following conditions are stated at the top of the text:

• if the answer is not an integer, mark the greatest integer less than
it

1The Czech team lead by Prof. Jaroslav Švrček is from Jakub Škoda Gymnázium,

Přerov; the Hungarian team lead by Prof. Janos Pataki is from Fazekas Mihály

Gimnázium; the Romanian one, lead by Professor Monica Dumitrache is from

Colegiul National de Informatica Tudor Vianu; and the team from the UK is from

Harrow School, lead by Prof. James Hanson.

18
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• if the answer is a negative integer, or if the problem has no solution,
mark 0000

• if the answer is an integer greater than 9999, mark the last four
digits.

The 24 problems were all set with reference to the comics saga of Asterix
and Obelix. They were divided in two halves: one entitled An easy trip

to Britain, the other A less easy mission to Egypt, to suggest to
the competitors which problems would present more difficulties.

A solution to a typical problem would not only require abstract reason-
ing, but also some lengthy calculations.

Most of the problems for the Team Competition are prepared by the
young mathematicians who collaborate with the Italian Olympic Com-
mittee—many appear in fig. 4 in their costumes—under the supervision
of Francesco Morandin, Federico Poloni and Marco Romito of the Italian
Olympic Committee. In the following we list two problems from each
part.

Figure 4: All invigilators wore costumes in tone with the problems: there
were Asterix, Obelix, Gauls, Romans, Egyptians, pirates,. . .
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The coins of the Britons: On the boat headed for Britain, Abelix asks
about the kind of money used there, and Cantorax answers, “It’s very
simple! We have iron bars worth 3 and a half sestertii plus 4 zinc pieces.
A zinc piece is worth 1 and a half copper pieces. To make a sestertium
you need 12 bronze pieces or, alternatively, 6 and a half copper pieces.”
If Abelix already has 18 bronze pieces, how many copper pieces will he
need to reach the value of one iron bar?

Answer: 0019

Math-use-lemmix’s birthday: Little Etothex’s seventh birthday is on
the same day as the birthday of old Math-use-lemmix, the most envied
man in the village (because of his wife). When the child asks how old
Math-use-lemmix is, the old man replies, “My age is a positive integer n
less than 300 whose digits either do not divide n or are zero, such that,
if you subtract your age, it becomes a number whose only prime divisors
are 7 and the first digit of n”. What is old Math-use-lemmix’s age?

Answer: 0203

Figure 5: Of course, there were Caesar and Cleopatra

20
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Chaos at the building site: The construction of Cleopatra’s monu-
ment has been speeding up, and now there are 11808 workers, among
whom, unfortunately, there may be many Roman spies. When Abelix
asks each worker to tell him what he knows, he receives the following
answers, in order:

“There is at least 1 Egyptian among us.”
“There are at least 2 Egyptians among us.”
“There are less than 3 Egyptians among us.”
“The workers at the construction site are at least 4.”
“The workers at the construction site are at least 5.”
“The workers at the construction site are less than 6.”

continuing with the seventh worker answering as the first, the eighth
as the second and so on, the n-th worker talks about n Egyptians or n
workers. Clearly, the Egyptian workers will always tell the truth, while
the Roman spies will always lie. How many spies are there among the
workers? (None of the true Egyptians is a spy.)

Answer: 4728

The pyramid of Cleopatra: Cleopatra has commissioned another
pyramid, this time with a square base. Its lateral sides are equilateral
triangles whose sides measure 100 cleopaces (a unit of measurement
determined by the length of Cleopatra’s legs). The queen demanded that
the architects surround the pyramid, situated in a perfectly flat desert,
with a wall so that, from every point on the internal wall, Cleopatra can
reach the summit of the pyramid in exactly 200 (cleo)paces, walking on
the desert and the surface of the pyramid. What will the perimeter of
the wall be, in cleopaces?

Answer: 1047

Without doubt, collaboration on the team has proved to be the most
important strategy to attack the problems: the winner of the 2011 Italian
Gara di Matematica a Squadre is the team of Liceo Scientifico Leonardo
Da Vinci from Treviso. The teams from Liceo Scientifico Annibale Calini,
Brescia, and Liceo Scientifico Gian Domenico Cassini, Genova, complete
the podium.

21
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Certainly, the two gold medalists and the bronze medalist (in the indi-
vidual competition) on the winning team helped to beat the others, but
it is important to note that the other two teams on the podium collec-
tively enlisted just three bronze medalists. And there were many gold
and silver medalists on teams which trailed behind those two.

In the last few years, together with the growing success of the Team
Competition, which presses students to join forces and to collaborate
to solve problems on a wide spectrum of mathematical subjects, the
average number of high school students that train constantly on olympic
mathematics has increased. The comments from the teachers suggest
that the two facts are related.

As for the individual competition, the winner was Federico Borghese
from Liceo Scientifico Farnesina in Rome with 31 points. Roberto Dvor-
nicich, head of the Italian Olympic Committee, had the following com-
ments on the competition and, in particular, on the results:

“The final round of the Italian Mathematical Olympiad has
become harder and harder in recent years, as the students
are far better prepared than years ago. This year, some
very difficult problems in the exam paper produced a rather
low average score so that already the score of 40 was to be
considered as absolutely outstanding. The guest competitors
from the Czech Republic, Hungary, and Romania, produced
some excellent solutions collecting gold and silver medals. In
my experience, the best in such a competition have very good
chances to become excellent professional mathematicians.”

Giuseppe Rosolini

Dipartimento di Matematica

Università degli Studi di Genova

ITALY
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The Iberoamerican Mathematics

Competition for University Students

Maria Losada

Maria E. Losada participated as a

young teenager in the Colombian Na-

tional Mathematics Olympiad and has

been involved in the project on and off

ever since she obtained an undergrad-

uate and a doctorate degree in Math-

ematics, the latter in the area of Set

Theory. For the last six years she

has been the director of the Colom-

bian Mathematics Olympiad Project.

She has been a team leader, deputy

leader and coordinator at various In-

ternational Mathematical Olympiads

and created the Regional Math Olym-

piads in Colombia in 2006 and the

Iberoamerican Interuniversity Mathe-

matics Competition (CIIM) in 2009.

This year during the first week of October, 48 university students from 11
Latin American university teams and four national olympiad teams from
7 countries met in Quito, Ecuador, to compete in the Third Iberoameri-
can Mathematics Competition for University Students (CIIM). The com-
petition was founded in Colombia in 2009 as an effort to improve the
competitive level of university students of the region and in particular
to increase the participation in the International Mathematics Compe-
tition for university students (IMC). Although the CIIM was first or-
ganized by the Colombian Math Olympiad subsequent hosts have been
the IMPA and Military Engineering Institute in Rio de Janeiro, Brazil,
under the leadership of Carlos Tamm de Araujo and Paulo Maranhão,
and the San Francisco University of Quito in Ecuador directed by Ed-
uardo Alba. Considering the fact that the IMPA has offered summer
scholarships for the medalists of the competition, and that the CIMAT
in Guanajuato, Mexico, has put in a bid for organizing it next year,
there are a good indications that the CIIM is on its way to becoming a
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well-established university competition in Latin America. Complement-
ing the Iberoamerican Mathematics Olympiad for University students
(OIMU) also begun in Colombia, the CIIM offers the opportunity for
universities to get more involved in the preparation of their students
hopefully, increasing the overall mathematics level in the region.

1 Short History

The first CIIM was organized in Colombia (http://oc.uan.edu.co/ciim/)
in the year 2009 with a participation of 55 students, of 15 teams from
12 universities and two national olympiad teams from 6 Latin Amer-
ican countries: Brazil, Colombia, Costa Rica, Ecuador, Mexico and
Venezuela. There were two four and a half hour exams held on two con-
secutive days, each consisting of three problems worth 10 points each.
Medals were given to two thirds of the students without honorable men-
tions in an effort to boost the participation in the contest. For this same
reason the special gold medal was awarded to the two most outstanding
students.

In 2010 the CIIM was organized in Brazil with 56 students from 15
universities and 2 national olympiad teams from 5 countries: Brazil,
Colombia, Ecuador, Mexico and Venezuela. The exam format was con-
tinued and medals were given more selectively to 28 students while 5
honorable mentions were given to students that did not obtain a medal
but solved a problem completely. Two special gold medals were once
again awarded. The IMPA also gave summer school scholarships to all
medalists, a gesture they continued in the third version of the CIIM.

2 Structure of the CIIM

In contrast to the OIMU, which is by correspondence, the CIIM emulates
the IMC by offering venues for the university teams to meet and exchange
experiences. Although the proposed participants are mainly university
teams, individual participants and national teams are also welcome.
Teams generally consist of four students and a professor who is their
team leader. Professors form a jury to choose the problems for the exam
from a short list provided in principle from original problems contributed
by the participating teams.
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To ensure international standards the CIIM began the competition with
special invited guests Géza Kós and Jószef Pelikán from Hungary, both
well-known experts in competitions. The former is also a main figure in
problem selection at the IMC, and his contribution allows the CIIM to
strive to work with original problems of a good international level; for
this reason he has been one of the special invited guests of the CIIM every
year. Another special guest is Carlos Tamm de Araujo, known to his
acquaintances as Gugu who, together with Alexander Fomin in Colombia
has become a strong fundamental force in the university competition
scene in Ibero-America. When creating the CIIM the author proposed
a union with these problem-creating specialists with the goal of creating
a team of support for the university competitions that would allow both
the CIIM and the OIMU to be organized in different places throughout
Ibero-America. This is a relatively novel idea on the competition scene,
although it is a bit similar to the reality of other competitions throughout
the world. After all, experts like Géza Kós, Gugu and Alexander Fomin
are not easy to come across.

There is no fixed format for the exams at the CIIM, but to date (see
below) they have consisted of two exams of three problems each in a four
and half hour period. Each problem is worth ten points.

As is the case in the IMC, the solutions of the exams are kept anonymous
and are read and graded by all the members of the jury first. Once marks
are proposed for all the papers, they are handed over to the team leaders
for coordination. If leaders agree with the proposed marks they sign
an acceptance form and coordination is not needed. Any discrepancy
between the proposed marks from the jury and those of the leader is
handled first by those who read the papers anonymously, by discussing
the mathematical elements of the student’s solution in what constitutes
coordination. Any further disagreement is then handled by the jury or
its representative.

Similar to other competitions, half of the participants receive a gold,
silver or bronze medal with a gold:silver:bronze ratio of 1:2:3. Students
that do not receive a medal and solve a problem with complete score
receive an honorable mention.

The CIIM also follows the main logistical component of the IMC in that
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the hosts choose and contract accommodation, meal venues and local
transportation and charge the students a fixed amount to cover most of
these costs. Additional costs such as the costs of materials, exam sites
or travel for special guests are assumed by the host institution. Special
guests include the problem specialists and also representatives of the
next host institution.

3 III CIIM

The teams that participated in the III CIIM organized by the San Fran-
cisco University of Quito, Ecuador, were from the following seven coun-
tries: Brazil, Colombia, Costa Rica, Ecuador, Guatemala, Mexico and
Peru. Brazil, Ecuador, Guatemala and Mexico brought national olym-
piad teams. The other teams were from the Instituto Militar de Inge-
nieŕıa in Rio de Janeiro (Brazil), the Universidad Industrial de Santander
in Bucaramanga (Colombia), the Universidad Antonio Nariño and the
Universidad de los Andes in Bogotá (Colombia), the Universidad del
Valle del Cauca in Cali (Colombia), the Universidad de Costa Rica in
San José, the Escuela Politécnica Nacional in Guayaquil (Ecuador), the
host institution, the Universidad San Francisco de Quito (Ecuador), the
Universidad Nacional Autónoma de México, the Universidad Nacional
de Ingenieŕıa in Lima (Perú) and the Pontificia Universidad Católica de
Perú.

This year’s problem set or short list had a fairly good contribution of
proposed problems from both the expert group and the participating
universities. The resulting exam was very accessible to the students and
was also a good instrument for differentiating them. One student from
Peru, Daniel Chen Soncco from the Universidad Nacional de Ingenieŕıa,
obtained a perfect score. The four other gold medalists, three from the
Brazilian Olympiad team and the last from the Universidad de Costa
Rica, solved five of the six problems and managed good headway on the
sixth problem.

4 Problems

The problem set follows below.
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First Day. Tuesday October 4th, 2011

1. (Universidad de los Andes) Find all real numbers a for which there
exist distinct real numbers b, c, d different from a such that the
four tangents to the curve y = sin(x) at the points (a, sin(a)),
(b, sin(b)), (c, sin(c)) and (d, sin(d)) form a rectangle.

2. (Brazilian Mathematics Olympiad) Let k be a positive integer and
let a be an integer such that a− 2 is a multiple of 7 and a6 − 1 is
a multiple of 7k. Show that (a+ 1)6 − 1 is also a multiple of 7k.

3. (Géza Kós) Let f(x) be a rational function with complex coef-
ficients whose denominator does not have multiple roots. Let
u0, u1, . . . , un be the complex roots of f and w1, w2, . . . , wm be
the roots of f ′. (Each root is considered as many times as its
multiplicity). Suppose that u0 is a single root of f . Show that

m
∑

k=1

1

wk − u0
= 2

n
∑

k=1

1

uk − u0
.

Note: A rational function is the quotient of two polynomials.

Second Day. Wednesday October 5th, 2011

4. (Universidad de San Francisco de Quito)

Define (b0, b1, . . . , bn−1) = (1, 1, 1, 0, . . . , 0) for n ≥ 3. Let Cn =
(ci,j)n×n be the matrix defined by ci,j = b(j−i) mod n. Show that
det(Cn) = 3 if n is not a multiple of 3 and det(Cn) = 0 if n is a
multiple of 3.

Note: m mod n is the remainder of the division of m by n.

5. (Universidad Nacional Autónoma de México) Let n be a positive
integer with d nonzero digits. For k = 0, . . . , d − 1, define nk as
the number that is obtained by moving the last k digits of n to
the front. For example, if n = 2184 then n0 = 2184, n1 = 4218,
n2 = 8421 and n3 = 1842. For m a positive integer, define sm(n)
as the number of values k such that nk is a multiple of m. Finally,
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define ad as the number of integers n with d nonzero digits for
which s2(n) + s3(n) + s5(n) = 2d. Find

lim
d→∞

ad

5d
.

6. (Brazilian Mathematics Olympiad) Let Γ be the branch of the
hyperbola x2

− y2 = 1 where x > 0. Let P0, P1, . . . , Pn, . . . be
distinct points of Γ with P0 = (1; 0) and P1 =

(

13
12 ,

5
12

)

. Let ti be
the tangent line to Γ at Pi. Suppose that for all i ≥ 0 the area of
the region delimited by ti, ti+1 and Γ is a constant that does not
depend on i. Find the coordinates of the points Pi in terms of i.
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1 Introduction

In this paper an exact formula is revealed by the author considering
the certain correlations existing between the bases of the main triangle
and the inscribed right-angled Cevian triangle, to some significant extent
indicating a new generalized theorem with respect to two particular angle
bisectors generated by the two side lengths of any right-angled Cevian
triangle.

2 Proposed Theorem

Let ABC be any triangle in which a right-angled Cevian triangle such
as DEF is inscribed, such that the angle EDF is a right angle and D,
E and F are any points on BC, AB and AC respectively. Consequently,
under these general conditions DE and DF must only be the bisectors
of angle ADB and angle ADC respectively whenever any right-angled
Cevian triangle is generated.
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A

B C

D

E

F

O

k

1

m

1

t1

BD

DC
= 1

t
, AE

BE
= 1

k
, CF

AF
= 1

m
. The constants t, k,m > 0, BC = a,

AC = b, AB = c, O is the Cevian center.

The exact generalized formula which is relevant to the DEF Cevian
triangle presented by the author can be denoted as follows according to
the above figure.

k =
a

√

(t+ 1)(b2 + tc
2)− a

2
t

Subsequently, a prominent generalized corollary is divulged as an inter-
locutory consequence with respect to the hypotenuse of any right-angled
Cevian triangle with the liason of the Cevian segments and the main Ce-
vian which connects the right-angled vertex of the Cevian triangle and
the opposite vertex of the main triangle as follows.

EF
2 = AD · BC −AE · BE −AF · FC

A Significant Remark Although the converse of this theorem can
very easily be proved using Ceva’s Theorem and the angle bisector
theorem in any point on BC such as D by initially considering DE

and DF as the bisectors of angle ADB and angle ADC respectively,
from the converse it cannot exactly be adduced and deduced that the
right-angled Cevian triangle DEF with DE and DF angle bisectors, is
the only right-angled Cevian triangle existing as the cevians AD, BF

and CE are concurrent at O (particulary since D point is moving).
Therefore via the converse it cannot be proved that DE and DF must

only be the bisectors of angle ADB and angle ADC respectively. Hence
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the proposed theorem of the author cannot be exactly and utterly proved
through the converse of it.

Prior to the commencement of the proof of the proposed theorem, the
following lemma which exists on any triangle is given as the principle
foundation of the proof of the theorem.

3 Lemma

Let ABC be a triangle in which any D point is located on the BC length
such that BD

DC
= 1

k
, k > 0, then

AD
2 =

(k + 1)(b2 + kc
2)− a

2
k

(k + 1)2
.

k is a constant and BC = a, AC = b, AB = c.

4 Proof of the Lemma

A

B C

D

X

c b

k1

BC = a, AC = b, AB = c. BD

DC
= 1

k
(k is a constant). Therefore

BD = a

(k+1)
, DC = ka

k+1
. The line AX is perpendicular to BC. Angle

ADB > 90◦. Moreover c2 = AX
2+BX

2 = AD
2
−DX

2+(BD+DX)2 =
AD

2 +BD
2 + 2 · BD ·DX . So

2 · BD ·DX = c
2
−AD

2
−BD

2 (1)
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Hence it can be easily proved that

2 ·DC ·DX = AD
2 +DC

2
− b

2 (2)

Dividing (1) by (2)

BD

DC

=
1

k

=
c
2
−AD

2
−BD

2

AD
2 +DC

2
− b

2
.

Substituting for BD = a

k+1
and DC = ka

k+1
, after easy manipulation

AD
2 =

(k + 1)(b2 + kc
2)− a

2
k

(k + 1)2
(3)

5 Proof of the Theorem

A

B C

D

E

F

O

k

1

m

1

t1

BD

DC

=
1

t

,

AE

BE

=
1

k

,

CF

AF

=
1

m

.

Angle EDF = 90◦, k, t,m > 0, BC = a, AC = b, AB = c, AD, BF and
CE Cevians are concurrent at O.

Ceva’s theorem yields

AE

BE

·

BD

DC

·

CF

AF

= 1,

hence
1

k

·

1

t

·

1

m

= 1,
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so

m =
1

kt

. (4)

Using (3) for ABC, the length of AD is found as

AD
2 =

(t+ 1)(b2 + tc
2)− a

2
t

(t+ 1)2
,

thus

AD =

√

(t+ 1)(b2 + tc
2)− a

2
t

(t+ 1)
(4.1)

DE
2 =

(k + 1)(BD
2 + kAD

2)− c
2
k

(k + 1)2

(using (3) for ADB). Replacing for BD
2 and AD

2

DE
2(k + 1)2 = (k + 1)

(

a
2

(t+ 1)2
+

k(t+ 1)(b2 + tc
2) + kta

2

(t+ 1)2

)

DE
2 =

a
2(1− kt) + k(t+ 1)(b2 + tc

2)

(k + 1)(t+ 1)2
−

c
2
k

(k + 1)2
(5)

DF
2(m+ 1)2 = (m+ 1)(AD2 +mDC

2)− b
2
m

(using (3) for ADC). Replacing for m by (4) and replacing for DC
2 and

AD
2 we obtain

DF
2
(kt+ 1)2

k
2
t
2

=
kt+ 1

kt

(

(t+ 1)(b2 + tc
2)− a

2
t

(t+ 1)2 + a2t

k(t+1)2

)

−

b
2

kt

DF
2 =

t

(

a
2
t(1− k) + k(t+ 1)(b2 + tc

2)
)

(t+ 1)2(kt+ 1)
−

b
2
kt

(kt+ 1)2
(6)

EC
2 =

(k + 1)(a2 + kb
2)− c

2
k

(k + 1)2
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(using (3) for ABC).

EF
2(m+ 1)2 = (m+ 1)(AE2 +mEC

2)− b
2
m

(using (3) for AEC). Replacing m by (4) and by replacing EC
2 and

AE
2

EF
2
(kt+ 1)2

k
2
t
2

=
(kt+ 1)

kt

(

c
2

(k + 1)2
+

(k + 1)(a2 + kb
2)− c

2
k

kt(k + 1)2

)

−

b
2

kt

EF
2 =

c
2
k(t− 1) + (k + 1)(a2 + kb

2)

(kt+ 1)(k + 1)2
−

b
2
kt

(kt+ 1)2
(7)

EF
2 = DE

2 +DF
2

(using the Pythagoras’ Theorem for DEF ). We can use (5), (6), (7),
simplify and get

k =
a

√

(t+ 1)(b2 + tc
2)− a

2
t

.

Since t > 0 and by (4.1) (t + 1)(b2 + tc
2) − a

2
t > 0 the ratio k (k > 0

exists such that k ∈ R).

BE

AE

= k =
a

t+ 1
·

t+ 1
√

(t+ 1)(b2 + tc
2)− a

2
t

=
BD

AD

(9)

Therefore DE is the angle bisector of ADB.

AF

FC

= m =
1

kt

=

√

(t+ 1)(b2 + tc
2)− a

2
t

at

(9.1)

Since t > 0 and by (4.1), (t+ 1)(b2 + tc
2)− a

2
t > 0 the ratio m (m > 0

exists such that m ∈ R)

AF

FC

= m =
(t+ 1)

at

·

√

(t+ 1)(b2 + tc
2)− a

2
t

t+ 1
=

AD

DC

.

Therefore DF is the bisector of angle ADC. (10)

Likewise from (9) and (10) it can be successively adduced that DE and
DF are the bisectors of the angle ADB and the angle ADC respectively.
Likewise the bases includindg the right angle of any right-angled Cevian
triangle behave as angle bisectors of the adjacent angles generated by
the main Cevian(AD) which joins the right-angled vertex of the Cevian
triangle and the opposite vertex of the main triangle.
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6 Corollary

The length of the hypotenuse EF of any right-angled Cevian triangle
DEF can be adduced as EF

2 = AD · BC − AE · BE − AF · FC. The
value of EF

2 has been obtained in (7) with the liaison of a, b, c, t and
k.

7 Proof of the Corollary

As DE is the angle bisector of ADB, it is well known that,

DE
2 = AD ·BD −AE ·BE (10.1)

As DF is the angle bisector of ADC, it is well known that,

DF
2 = AD ·DC −AF · FC (10.2)

DE
2 +DF

2 = AD(BD +DC)−AE ·BE −AF · FC

EF
2 = AD · BC −AE · BE −AF · FC (11)

8 Significant Conclusions of the Theorem

(1) Readers are encouraged to consider very carefully the fact that the
author has never used trigonometry or vector algebra methods on the
proof in the above theorem and corollaries, accenting that the indepth
Euclidean length calculations can be thoroughly accomplished using only
advanced Euclidean plane geometry, without the assistance of trigonom-
etry.

(2) If D is a fixed point which adduces further and if k could be obtained
from a, b, and c, then the proof of this theorem would be much easier
since the proof can be given using some elementary Euclidean techniques.
Nevertheless within this theorem all the 3 points or edges of the right-
angled Cevian triangle are movable as freely as you wish and that’s why
a more generalized and intricate proof has been given for the theorem.

(3) Note that since k, m can be obtained with the liason of a, b, c and t

using (8) and (9.1) for all t ∈ R, t > 0, any right-angled Cevian triangle
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can be constructed or inscribed on any arbitary point of BC; similarly
on AB and AC as well.

(4) If either E or F is a fixed point intending that if k or m is a constant
ratio, then by using (8) and (9.1) it can be easily adduced that tmust also
be a constant ratio revealing that the D point or the right-angled edge
of the Cevian triangle must also be a fixed point; whence consequently
there cannot be two right-angled Cevian triangles existing if either E or
F is a fixed point.

(5) Eventually this felicitous theorem further adduces the complexity
and beauty of the advanced geometry as well as the challenge of being
resolved as an advanced Euclidean geometry problem, although this
method is being rapidly collapsed and understated in most university
mathematics curriculums at present.
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The aim of this article is to present some interesting results gained on the
basis of long-range working of both authors with mathematically gifted
pupils of secondary schools in the Czech Republic. In the school-year
2010/2011 there was assigned for pupils on special seminarium (maths
camp) the following problem:

Problem 1. Let a, b, c be pairwisely different positive real numbers.
Prove that the quadratic equation

(a+ b+ c)x2 + 2

(

a

b
+

b

c
+

c

a

)

x+

(

1

a
+

1

b
+

1

c

)

= 0 (1)

with unknown x has two different real roots.

This problem was such an incentive for the pupils, that they worked
out several interesting solutions which will be presented in this contribu-
tion. Most of solvers have tried to prove that the discriminant of given
quadratic equation (1) must be (under given conditions) positive. This
is a necessary and sufficient condition for satisfying the given task. Their
consideration led to the solving of a problem given to contestants of the
second round of the British Mathematical Olympiad (BMO) in the year
2005.

Problem 2. Prove that for arbitrary positive real numbers a, b, c the
following inequality

(

a

b
+

b

c
+

c

a

)2

≥ (a+ b+ c)

(

1

a
+

1

b
+

1

c

)

. (2)

holds.

For successful solving of Problem 1 we need to prove the following state-
ment: For arbitrary positive real numbers a, b, c which are mutually
different cannot the equality (in the Problem 2) hold. Then a discrimi-
nant of the given quadratic equation is a positive number.

All achieved solutions of the given problem we can divide in some types.
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1 Proofs involving a multiplying form of the inequal-

ity (2)

After multiplying both sides of (2) we obtain the following (equivalent)
form of this inequality

a2

b2
+

b2

c2
+

c2

a2
+ 2

(

a

c
+

b

a
+

c

b

)

≥ 3 +

(

a

c
+

b

a
+

c

b

)

+

(

a

b
+

b

c
+

c

a

)

.

After a short manipulation this inequality implies

a2

b2
+

b2

c2
+

c2

a2
+

a

c
+

b

a
+

c

b
≥ 3 +

a

b
+

b

c
+

c

a
. (3)

Several ways of proving the last inequality came from solvers.

Sum of squares

Let us denote x = a/b, y = b/c, z = c/a, then x, y, z are positive real
numbers. Then the inequality (3) is in the form

x2 + y2 + z2 +
1

z
+

1

x
+

1

y
≥ 3 + x+ y + z,

which implies (after some manipulation)

(x+ 1)(x− 1)2

x
+

(y + 1)(y − 1)2

y
+

(z + 1)(z − 1)2

z
≥ 0.

The inequality is fulfilled for any triple of positive real numbers x, y, z,
because all summands on its left side are non-negative numbers. The
equality holds in this case if and only if x = y = z = 1, i.e. a = b = c.

Using a sum of squares and the AM–GM means inequality

It is easy to see that

(a

b
− 1

)2

+

(

b

c
− 1

)2

+
( c

a
− 1

)2

≥ 0
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for any positive real numbers. By the AM–GM means inequality it holds
also

a

b
+

b

a
≥ 2

√

ab

ba
= 2

and similarly
b

c
+

c

b
≥ 2,

c

a
+

a

c
≥ 2.

Adding up all four of these inequalities we have

(a

b
− 1

)2

+

(

b

c
− 1

)2

+
( c

a
− 1

)2

+

+

(

a

b
+

b

a

)

+

(

b

c
+

c

b

)

+
( c

a
+

a

b

)

≥ 6.

Using some algebraical manipulation we have the inequality (3). It is
easy to see again, that the equality holds if and only if a = b = c.

Combining the Cauchy-Schwarz inequality and the AM–GM

inequality

By the AM–GM means inequality we get

a

c
+

b

a
+

c

b
≥ 3

3

√

abc

cab
= 3.

To complete the proof of the inequality (3) it is necessary to prove the
following inequality

a2

b2
+

b2

c2
+

c2

a2
≥

a

b
+

b

c
+

c

a
.

But the last inequality is a consequence of the Cauchy-Schwarz inequality
and AM–GM inequality of the form

(12 + 12 + 12)

(

a2

b2
+

b2

c2
+

c2

a2

)

≥

(

a

b
+

b

c
+

c

a

)2

≥ 3

(

a

b
+

b

c
+

c

a

)

.

The equality holds if and only if a = b = c.
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Using the AM–GM inequality only

The solution based on another way of rearranging inequality (2) was
presented by a member of the mentioned maths camp—Jakub Solovský.

We can multiply both sides of the inequality (2) by the positive real
number (abc)2. Further we can factorize the terms on both sides of the
inequality. Then this inequality is equivalent to the following inequality

a4c2 + b4a2 + c4b2 + 2a3b2c+ 2b3c2a+ 2c3a2b ≥

≥ a3b2c+ b3c2a+ c3a2b+ a3bc2 + b3ca2 + c3ab2 + 3a2b2c2.

By some algebraical manipulation we get the equivalent inequality

a4c2+b4a2+c4b2+a3b2c+b3c2a+c3a2b ≥ a3bc2+b3ca2+c3ab2+3a2b2c2.

By the AM–GM inequality we have

a3b2c+ b3c2a+ c3a2b ≥ 3a2b2c2. (4)

Using the same inequality we can further obtain

4

6
a4c2 +

1

6
b4a2 +

1

6
c4b2 ≥ a3bc2, (5)

and similarly

4

6
b4a2 +

1

6
c4b2 +

1

6
a4c2 ≥ b3ca2, (6)

4

6
c4b2 +

1

6
a4c2 +

1

6
b4a2 ≥ c3ab2. (7)

The inequality (1) is then a sum of inequalities (4)–(7).

Simultaneously, the equality in (4) will be true, if and only if a3b2c =
b3c2a = c3a2b, thus in the case a = b = c. Similarly, the equality in (5)–
(7) holds, if and only if a4c2 = b4a2 = c4b2, thus a = b = c. Therefore
we can finally see that the equality in (1) holds, if and only if a = b = c.
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2 Proofs without using a multiplying form of the

inequality (2)

Other solutions immediately used inequality (2). Some of them involved
also two identities

(a+ b+ c) =

(

1

bc
+

1

ca
+

1

ab

)

abc

and
(

1

a
+

1

b
+

1

c

)

= (bc+ ca+ ab)
1

abc
.

After multiplying these inequalities we can find, that the identity

(a+ b+ c)

(

1

a
+

1

b
+

1

c

)

=

(

1

bc
+

1

ca
+

1

ab

)

(bc+ ca+ ab) (8)

holds.

Cauchy–Schwarz inequality

By the Cauchy–Schwarz inequality it holds that

(

a

b
+

b

c
+

c

a

)

(ab+ bc+ ca) ≥ (a+ b+ c)2. (9)

Similarly, by the same inequality we have

(

a

b
+

b

c
+

c

a

)(

1

ab
+

1

bc
+

1

ca

)

≥

(

1

a
+

1

b
+

1

c

)2

. (10)

Multiplying of (9) and (10) we get after easy manipulation (2). Similarly
as in previous solutions we can see, that the equality in (9) and (10)
holds, if and only if a = b = c.

Jensen’s inequality

On the base of the identity (8) we can employ also well-known Jensen’s
inequality.
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Since the function y = 1

x
is convex on the set of positive real numbers,

for positive real numbers

α1 =
a

a+ b+ c
, α2 =

b

a+ b+ c
, α3 =

c

a+ b+ c

it holds α1 + α2 + α3 = 1. By Jensen’s inequality we have

a

a+ b+ c
·

1

b
+

b

a+ b+ c
·

1

c
+

c

a+ b+ c
·

1

a
≥

≥

1

a

a+ b+ c
· b+

b

a+ b+ c
· c+

c

a+ b+ c
· a

.

The last inequality can be easily rearranged to the inequality (9).

Similarly, for the same convex function y = 1

x
and positive real numbers

α1 =

1

a
1

a
+

1

b
+

1

c

, α2 =

1

b
1

a
+

1

b
+

1

c

, α3 =

1

c
1

a
+

1

b
+

1

c

with a sum 1 it holds (by the Jensen’s inequality)

1

a
1

a
+

1

b
+

1

c

·

1
1

c

+

1

b
1

a
+

1

b
+

1

c

·

1
1

a

+

1

c
1

a
+

1

b
+

1

c

·

1
1

b

≥

≥

1
1

a
1

a
+

1

b
+

1

c

·

1

c
+

1

b
1

a
+

1

b
+

1

c

·

1

a
+

1

c
1

a
+

1

b
+

1

c

·

1

b

.

This inequality can be easily rearranged to the inequality (10) and fur-
ther we can complete the proof similarly as in the last solution.
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[3] Steele, J. M. The Cauchy-Schwarz Master Class—An Introduction

to the Art of Mathematical Inequalities, Cambridge University Press,
New York, 2004.

[4] http://www.bmoc.maths.org/home/bmo2-2005.pdf, [27. 10. 2011]

Pavel Calábek
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1 Introduction

Among various problems of modern school mathematics there are always
problems incomprehensible for the majority of good pupils and teachers.
Sometimes such problems can cause serious difficulties even for profes-
sional mathematicians. A typical example of such difficulties is in a topic
“Functional equations and inequalities”.

The first reason for those difficulties is the absence of elementary solution
algorithms. To overcome difficulties in the search for the solution one
needs frequently to use well developed creative thinking. In addition,
there is a need to use abstract definitions when solving functional equa-
tions and inequalities, or the ability to generalize. It is not a secret that
abstract in mathematics can scare a lot of pupils and push them away.
A lot of times it happens because the science of generalization was not
presented in a proper way. In reality, “. . . to abstract in order to ascend,
to fly up, and to look on a crowd of separate facts from a bird’s-eye
view and to see the correlation between them, it is impossible to achieve
without abstraction. This view from above can be very beautiful and
useful, and it is reward for a work of understanding of abstract ideas. It
is important to feel the advantage of abstractiveness as early as possible.
Then this feeling will stimulate the search of the solution, and will keep

47



Mathematics Competitions Vol 24 No 2 2011

us out of despair.”1

2 Functional inequalities

In contemporary school literature it is difficult to find general approaches
to the solution of functional inequalities. We will try to describe possible
logical and technical difficulties below.

Let us consider a set of examples.

Example 1. Let us define the value of f (f (x)) as f ◦ f . Let f (x) =
x2 + x− 1

4 . Solve inequality f ◦ f ◦ f ◦ · · · ◦ f
� �� �

2011

≥ 0.

Solution. It is easy to notice, that

f (x) = x2 + x− 1

4
=

�

x+
1

2

�2

− 1

2
⇒

f (f (x)) =

�

f (x) +
1

2

�2

− 1

2

=

��

�

x+
1

2

�2

− 1

2

�

+
1

2

�2

− 1

2
=

�

x+
1

2

�4

− 1

2

In a similar way,

f ◦ f ◦ f = f (f (f (x))) =

�

f (f (x)) +
1

2

�2

− 1

2

=

�

�

x+
1

2

�4

− 1

2
+

1

2

�2

− 1

2
=

�

x+
1

2

�8

− 1

2

Therefore we conclude that

f ◦ f ◦ f ◦ · · · ◦ f
� �� �

n

= f ◦



f ◦ f ◦ f ◦ · · · ◦ f
� �� �

n−1



 =

�

x+
1

2

�2n

− 1

2

1Alberto P. Calderon (1920–1998). Published in: Bull. ICMI, 47 (1999), 56–62
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(The proof by the mathematical induction by n is trivial).

In our case we get

(

x+
1

2

)22011

− 1

2
≥ 0 ⇔

(

x+
1

2

)22011

≥ 1

2
⇔

∣

∣

∣

∣

x+
1

2

∣

∣

∣

∣

≥ 2
2011√

0.5

⇔ x ∈ (−∞− 2
2011√

0.5− 0.5] ∪ [
2
2011√

0.5− 0.5,+∞).

In general case we find the following problem:

Problem. Let us define the value of f (f (x)) as f ◦ f .
a) Let f (x) = x2 + ax+ b, b = a

2

4 − a

2 . Solve the inequality

f ◦ f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

≥ c.

b) Find the coefficients for cubic polynomial
f (x) = x3 + ax2 + bx+ c and solve the inequality

f ◦ f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

≥ d

in the same way.

Example 2. Does there exist a real function of a real variable f : R → R

such that for any real x, y it is true

f (x− f (y)) ≤ y · f (x) + x. (1)

Solution. The first difficulty is that when the equation was substituted
by the inequality, it immediately limited our technical abilities, e.g. we
can use the transitivity law only in one direction. However, we can
bypass this difficulty, e.g. by the use of enumerative technique, but one
needs to be very careful. The statement (1) uses the sign (≤), i.e. one
can present the problem as a combination of two independent ones E2.1
and E2.2.
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E2.1. Does there exist a real function of a real variable f : R → R such
that for any real x, y it is true that

f (x− f (y)) = y · f (x) + x (2)

Solution. We define f (0) = c. For y = 0, x ∈ R we get:

f (x− f (0)) = 0 · f (x) + x

f (x− c) = x

f (x) = x+ c

We now use the last equation in the statement (2),

(x− f (y)) + c = f (x− f (y)) = y · f (x) + x = y · (x+ c) + x

hence

x− f (y) + c = y · (x+ c) + x

x− y − c+ c = y (x+ c) + x

0 = y (x+ c+ 1).

We obtain a contradiction for x �= −c− 1, y �= 0.

E2.2. Does there exist a real function of a real variable f : R → R such
that for any real x, y it is true that

f (x− f (y)) < y · f (x) + x (3)

Solution. For y = 0, x ∈ R we obtain: f (x− f (y)) < y · f (x) + x

f (x− f (0)) < 0 · f (x) + x ⇔
f (x− c) < x ⇒ f (x) < x+ c.

For x = 0, we get c < c which is a contradiction.

A reader can look for a more brief solution of problems E2.1 and E2.2.
However, the following question immediately arises: are the separate
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proofs of impossibilities of E2.1 and E2.2 enough for the proof of im-
possibility of (1)? We would like to answer “Why not?”, but this is an
incorrect answer. The point is that the solution of a functional inequal-
ity is usually a set of pairs of numbers. And then if we claim that a
pair (x0, y0) contradicts E2.1, and does not contradict to E2.2, then it
does not contradict to the total statement (1). In a similar way, if a
pair (x1, y1) contradicts E2.2, and does not contradict to E2.1, then it
does not contradict to the total statement (1), Therefore, contradictions
to E2.1 and E2.2 in two different points does not lead to contradiction
to statement (1). To understand this fact is a real logical challenge for
pupils. We present below a correct solution.

Suppose that such function exists.

I. We define f (0) = c. Consider for y = 0, x ∈ R the following inequality:
f (x− f (y)) ≤ y · f (x) + x. We find: f (x− f (0)) ≤ 0 · f (x) + x

f (x− c) ≤ x

f (x) ≤ x+ c. (4)

The following true statement follows from inequality (4). Y1: There ex-
ists the sequence of real numbers x1, x2, . . . , xi, . . ., such that xi → (−∞)
starting from some i, and also f (xi) ≤ (xi + c) → (−∞).

II. It follows from the problem that for all y ∈ R, f (y) = x

c = f (0) ≤ y · f (f (y)) + f (y)

c ≤ y · f (f (y)) + f (y) ≤ y · f (f (y)) + y + c

0 ≤ y · [f (f (y)) + 1]. (5)

III. We define f (1) = a.

III1. If f (1) = a > 0, then we consider all ordered pairs (x, y) = (1, y)

f (x− f (y)) ≤ y · f (x) + x

f (1− f (y)) ≤ y · a+ 1. (6)

According to statement Y1 we find that for yi → (−∞) it follows f (yi) →
(−∞). Then mi = [1− f (yi)] → (+∞). From inequalities (5) we ob-
tain:

0 ≤ mi · [f (f (mi)) + 1] ⇒
{

−1 ≤ f(f(m1))
mi > 0
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Using statement Y1 and inequalities (5) and (6) we get:

−1 ≤ f (f (mi)) < f (mi) + c = f (1− f (yi)) + c ≤ yi · a+ 1 + c

mi = 1− f (yi) > 0, yi → (−∞)

−1 ≤ yi · a+ 1+ f (0) , a > 0, yi → (−∞).

Contradiction.

III2. Consider f (1) = a = 0: Then for y = 1 and x < 0 we find:

f (x− f (y)) ≤ y · f (x) + x,

f (x) ≤ 1 · f (x) + x

0 ≤ x.

Contradiction.

III3. Consider f (1) = a < 0. From the original inequality of the problem
it immediately follows:

f (x− f (y)) ≤ y · f (x) + x, for x = a, y = 1

c = f (0) = f (a− a) ≤ 1 · f (a) + a

c ≤ f (a) + a ≤ (a+ c) + a

0 ≤ a.

Contradiction.

We therefore conclude that f (1) = a is not defined, i.e. such a function
does not exist.

Conclusion. For any real function f : R → R, one can find such real
x, y that satisfy the inequality

f (x− f (y)) > y · f (x) + x.

As we have seen transition to infinity was very useful. Such transition
we shall apply in the next examples.
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Example 3. (52nd IMO, 2011) Let f : R → R be a real-valued
function defined on the set of real numbers that satisfies

f (x+ y) ≤ y · f (x) + f(f(x)) (7)

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

Solution.

I. We define f (0) = c. To start we get some inequalities which we use
later. For x = 0 we have for all real y from (7),

f (y) ≤ y · f (0) + f(f(0)) = c · y + f(c) ⇔
f (y) ≤ c · y + f(c). (8)

If we make substitutions y = x and y = f (x) then from (8) we get
respectively:

f(x) ≤ c · x+ f(c) (9)

and
f(f(x)) ≤ c · f(x) + f(c). (10)

For substitutions y = −x from (7) and using (10) we get

c = f (0) ≤ −x · f (x) + f(f(x)) ≤ −x · f (x) + c · f(x) + f(c)

hence
c− f(c) ≤ (c− x)f (x). (11)

II. Now we want to prove that f (0) = c = 0.

II1. Suppose that f (0) = c > 0. Then for x < 0 < c we have

c− x > 0.

Multiply both sides of (9) by c− x and we get from (11)

c− f(c) ≤ (c− x)f (x) ≤ (c− x)(c · x+ f(c))

hence
c− f(c) ≤ (c− x)(c · x+ f(c)).
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The left side of this inequality is a constant. But for the right side we
have (c− x)(c · x+ f(c)) → −∞ if x → −∞. Contradiction.

II2. Suppose that f (0) = c < 0. For y = 0 we have for all real x from
(7),

f (x) ≤ f(f(x)). (12)

In particular, for x = 0 and for x = c we have

c = f (0) ≤ f(f(0)) = f(c) ⇔ c ≤ f(c) (13)

f (c) ≤ f(f(c)). (14)

Further, by (10) we get

f (c) ≤ f(f(c)) ≤ c · f(c) + f(c) ⇒ 0 ≤ c · f(c).

Since c < 0 then 0 ≥ f(c). If f(c) = 0, then from (14)

0 = f (c) ≤ f(f(c)) = f(0) = c < 0.

Contradiction.

Hence f(c) < 0. Then from (9) for all x ≥ 0

f(x) ≤ c · x+ f(c) < 0 ⇒ f(x) < 0.

If exist x0 < 0 that f (x0) ≥ 0 then we get 0 > f (f (x0)) ≥ f (x0) ≥ 0.
Contradiction. Therefore f(x) < 0 for all x ∈ R .

If we make substitution y = f (x)− x into (7) then we get:

f (f (x)) ≤ (f (x)− x) · f (x) + f (f (x))

Hence for all x, 0 ≤ (f (x)− x) · f (x).

Since f(x) < 0 then x ≥ f(x) for all x ∈ R. Remark that if x → −∞
then f(x) → −∞. Substituting f(x) in place of x in the last inequality
we get the chain inequalities by (12), f(f(x)) ≥ f(x) ≥ f(f(x)). Hence
f(x) = f(f(x)) for all x ∈ R.

Substitute y = −x into (7) then we get:

c = f (0) ≤ −x · f (x) + f(f(x)) = (1− x) · f (x) ⇔ c ≤ (1− x) · f (x).
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The left side of this inequality is a constant. But for the right side we
have (1− x)f(x) → −∞ if x → −∞. Contradiction.

Thus we have only one possibility: f (0) = c = 0.

III. If f (0) = c = 0 then from (9) we get for all real x, f(x) ≤ c·x+f(c) =
f(0) = 0 ⇔ f(x) ≤ 0. From (11) for all real x

0 = c− f(c) ≤ (c− x)f (x) = −x · f(x) ⇔ x · f(x) ≤ 0.

Hence for all x < 0 we have 0 ≤ f(x) ≤ 0 ⇔ f(x) = 0. Q.E.D.

Example 4. Does there exist a real function of a real variable f , such
that for any real (x, y) inequality (15) is true?

f (x) + f (y)

2
≥ f

(

x+ y

2

)

+ |x− y|. (15)

Solution. We use the proof by contradiction.

I. If f (x) = const = c0, then for (x− y) �= 0 c0+c0

2 ≥ c0 + |x − y|,
0 ≥ |x− y|. We conclude that f (x) �= const.

II. One of the difficulties in the solution of this problem is the fact that all
the data is abstract. It is useful in such a situation to consider a graph
of the function. Let us draw points (x, y) ⊂ [a, b]. We divide interval
[a, b] on n equal parts. The length of each part is m = b−a

n
. Thus, we

obtain 1 ≤ k ≤ n a = x0, xk = a+ k ·m.

III. Without loss of generality, suppose that f (x0) ≤ f (x1). Let us prove
that f (x2) > f (x1). Indeed, if f (x2) ≤ f (x1), then from (15) it follows:

f (x0) + f (x2)

2
≥ f

(

x0 + x2

2

)

+ 2m

f (x0) + f (x2)

2
≥ f (x1) + 2m

0 ≥ f (x0)− f (x1)

2
+

f (x2)− f (x1)

2
≥ 2m > 0.

Contradiction.
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Therefore, f (x2) > f (x1). In a similar way, we find that for values
{x1;x2;x3}, if f (x2) > f (x1), then from (15) it follows: f (x3) > f (x2).
Continuing these considerations, we find f (x0) < f (x1) < f (x2) <

· · · < f (xn).

IV. We conclude, that for all 1 ≤ k ≤ n in {xk;xk+1;xk+2} :

f (xk+1)− f (xk)

2
− f (xk)− f (xk−1)

2
≥ 2m, k ≥ 1

f (xk+1)− f (xk)

m
− f (xk)− f (xk−1)

m
≥ 4 ⇔

tanαk − tanαk−1 ≥ 4.
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Then

tanα1 − tanα0 ≥ 4

tanα2 − tanα1 ≥ 4

tanα3 − tanα2 ≥ 4

. . .

tanαn-1 − tanαn−2 ≥ 4

tanαn−1 − tanα0 ≥ 4 · (n− 1) ⇒
tanαn−1 ≥ tanα0 + 4 · (n− 1) > 4 · (n− 1) .

V. From the construction of the function graph, we find:

f (x1) = f (x0) +m · tanα0

f (x2) = f (x1) +m · tanα1

f (x3) = f (x2) +m · tanα2

. . .

f (xn) = f (xn−1) +m · tanαn−1

So

f (b) = f (xn) = f (x0) +m (tanα0 + tanα1 + tanα2 + · · ·+ tanαn−1)

≥ f (a) +m (4 + 4 · 2 + 4 · 3 + · · ·+ 4 · (n− 1))

≥ f (a) + 4 · b− a

n
· n · (n− 1)

2
= f (a) + 2 · (b− a) · (n− 1) ⇒

f (b) ≥ f (a) + 2 · (b− a) · (n− 1) → ∞.

We conclude that f (xn) = f (b) is undefined. Contradiction.

Therefore, such function f of a real variable does not exist.

Remark. If increasing n we obtain f (x0) ≥ f (x1), then for this case
we consider a symmetrical interval [2a− b, a]. As in a previous case, we
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divide it into n equal parts, and prove that

f (t1) > f (x0)

tk − tk−1 =
b− a

n
= m

f (x0) < f (t1) < f (t2) < · · · < f (tn)

0 < 90◦ − βn−1 < ε → 0. Therefore, the function is undefined f (tn) =
f (2a− b), which contradicts the condition of the problem.

3 When the technique helps

Sometimes difficult abstract functional inequalities or equations can be
solved by special technical tricks. The difficulty is that it is impossible
to define the technical trick from the very beginning. Successful ideas
appear when the data is under consideration.

Example 5. (Grossman Olympiad, Israel, 2000) Find all functions
of integer variables that fulfill

f : Z → Z

3f (z)− 2f (f (z)) = z

Solution.

I. For some z0 ∈ Z we define,

x0 = z0, x1 = f(z0), x2 = f(f(z0)) = f ◦ f,
x3 = f(f(f(z0))) = f ◦ f ◦ f, . . . ,
xn = f(f(f . . . (f(z0)) . . . ))

︸ ︷︷ ︸

n

= f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

.

We first show, that if f (z) = z, then this function is a solution. Indeed,
we get an identity

f : Z → Z

3 · f (z)− 2 · f (f (z)) = z
⇔ f : Z → Z

3z − 2z = z
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II. Then from the conditions of the problem we have

f : Z → Z

f (z)− z = 2f (f (z))− 2f (z) .

We find

f ◦ f − f(z0) =
1

2
(f(z0)− z0) ,

f ◦ f ◦ f − f ◦ f =
1

2
(f ◦ f − f(z0)) ,

. . .

f ◦ f ◦ · · · ◦ f
� �� �

n

− f ◦ f ◦ · · · ◦ f
� �� �

n−1

=
1

2



f ◦ f ◦ · · · ◦ f
� �� �

n−1

− f ◦ f ◦ · · · ◦ f
� �� �

n−2





(16)

We get the chain of the equalities

f ◦ f ◦ · · · ◦ f
� �� �

n

− f ◦ f ◦ · · · ◦ f
� �� �

n−1

=
1

2



f ◦ f ◦ · · · ◦ f
� �� �

n−1

− f ◦ f ◦ · · · ◦ f
� �� �

n−2





=
1

2





1

2



f ◦ f ◦ · · · ◦ f
� �� �

n−2

− f ◦ f ◦ · · · ◦ f
� �� �

n−3







 = . . .

=
1

2

�

1

2

�

. . .

�

1

2
(f ◦ f ◦ f − f ◦ f)

���

=
1

2n−2
(f ◦ f − f(z0))

=
1

2n−1
(f(z0)− z0) .

Hence

f ◦ f ◦ · · · ◦ f
� �� �

n

− f ◦ f ◦ · · · ◦ f
� �� �

n−1

=
f(z0)− z0

2n−1
. (17)

The left side of the last equality is a integer number for any natural
n ≥ 2. Therefore, equality (17) is possible only if f(z0)− z0 = 0 for any
z0. It means we have the only possible solution: f (x) = x, x ∈ Z.

Answer: f (x) = x, x ∈ Z.
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Remark. The equality (17) we can get after multiplying all equalities in
(16) too. In this case we have:



f ◦ f ◦ · · · ◦ f
� �� �

n

− f ◦ f ◦ · · · ◦ f
� �� �

n−1



 · A =
f(z0)− z0

2n−1
A ,

where

A = (f ◦ f − f(z0)) (f ◦ f ◦ f − f ◦ f) · . . .

·



f ◦ f ◦ · · · ◦ f
� �� �

n−1

− f ◦ f ◦ · · · ◦ f
� �� �

n−2



 .

We should consider two possibilities.

If A �= 0, then it is possible to cancel A �= 0 on both sides and we get
(17).

If A = 0, then one of the factors is equal to zero. We have for all natural
n ≥ 2:

f : Z → Z

3 · xn−1 − 2 · xn = xn−2
⇔ f : Z → Z

2 · (xn−1 − xn) = xn−2 − xn−1

It is clear that if for some natural k ≥ 2 and some z0 it is true xk−1−xk =
0, then we immediately obtain xk−2 − xk−1 = 0. Finally, “going back”,
we find: x0 = x1, i.e. f (z) = z.

4 Instead of conclusion

As we have mentioned above, solution of any functional inequality or
equation is always a small mathematical research, which may become a
small discovery for a pupil. The level of difficulties corresponds to the
level of the achievement. The limits of this paper do not allow us to
analyze other interesting examples. But we hope that the small number
examples described above will let the reader to feel more comfortable
when solving functional equations and inequalities. The problems of
this topic can serve as a measure of creative thinking.

60



Mathematics Competitions Vol 24 No 2 2011

References

[1] Agakhanov, N., Kuptsov, L. & Nesterenko, Y. (1997): Mathematical

Olympiads for School Children. Moscow: Prosveshcheniye.

[2] Leman, A. (1965): Collection of Problems of the Moscow Mathemat-

ical Olympiads. Moscow: Prosveshcheniye.

[3] International Mathematical Olympiads. Compiled by A. A. Fomin,
G. M. Kuznetzova. Moscow, Drofa Publ. House, 2000, p. 5, 34–35.
(in Russ.).

[4] Proizvolov V., Spivak A., Circumference Averaging. The Kvant Jour-

nal, No 1, 1998, p. 29–31. (In Russ.).

[5] The XVI International Tournament of Towns. 1994–1995 (Autumn
Cycle).
http://www.turgor.ru/16/turnir16.php#turnir16otm.

[6] http://www.imo-official.com/.

Peter Samovol, Ph.D.
School “Eshel Hanasi” (teacher)
Kaye Academic College of Education,
Beer-Sheva
Ben-Gurion University of the Negev,
Beer-Sheva
Max Boren Street, 21
Beer-Sheva 84834
ISRAEL
email: Pet12@012.net.il

Tal Kagalovsky
Kahal 7
Lehavim
ISRAEL
email: spintal@gmail.com

Valery M. Zhuravlev
Kuskovskaya street, 17/32
Moscow, 111141
RUSSIA
e-mail: Zhuravlevvm@mail.ru

61



Mathematics Competitions Vol 24 No 2 2011

The 52nd International Mathematical

Olympiad,

Amsterdam, The Netherlands, 2011

The 52nd International Mathematical Olympiad (IMO) was held on 12–
24 July in Amsterdam, The Netherlands.

The Netherlands is known for its unusual geographical make up, with
about 20 % of its land lying below the sea level, protected by an elabo-
rate system of dikes. The word “Netherlands” literally means “low-lying
lands”. The capital Amsterdam is a vibrant, modern city permeated
with museums, bicycles and canals. It is the ideal location to accommo-
date 564 of the world’s best high school mathematics students, represent-
ing 101 countries. This is the second largest IMO in terms of contestant
numbers, with only one less contestant than the record achieved two
years ago in Bremen.

Just like the Olympic Games, the IMO began with an Opening Cere-
mony. Nazar Agakhanov, Chairman of the IMO Advisory Board, high-
lighted the importance of mathematics and welcomed all the participants
using different languages. The teams then marched on stage according
to continental groupings in a parade of nations. The parade was inter-
spersed by energetic local dancers, acrobats, skaters and a freestyle BMX
rider, creating a youthful and lively atmosphere. The IMO was officially
opened in a comical fashion, with a banging of the gong by Robbert
Dijkgraaf, Chairman of the Board of IMO 2011, and Eberhard van der
Laan, Mayor of Amsterdam.

A few days before the IMO, the Team Leaders gathered in a conference
centre named NH Koningshof, situated in a town called Veldhoven, in the
Eindhoven Region. Incidentally, Eindhoven was recently crowned as the
smartest region in the world, a title certainly reassured by the presence
of the Jury of IMO Team Leaders. The task was to select the contest
problems from a shortlist of 30 problem proposals. Understandably, this
process was kept secret from the students and far away from the contest
location. The shortlist was of the highest quality due to excellent prepa-
ration by the locally organised Problems Selection Committee. Despite
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being spoilt for choice, the Jury eventually decided on six problems, as
follows.

1. An easy algebraic exercise with shades of number theory. The
underlying ideas are quite simple, but the problem demands a fair
level of organisation. It was proposed by Mexico.

2. A beautiful combinatorial geometry problem involving windmills, a
Dutch cultural icon. It puts a fresh spin on the concept of dividing
lines, or lines with an almost equal number of points on either
side. Observations of these lines lead to a solution incorporating
a delightful invariant. The problem was proposed by Geoff Smith
of the United Kingdom. Geoff was a former UK Team Leader and
a current member of the IMO Advisory Board.

3. A tricky functional inequality originated from Belarus. Just like
any other functional inequality, the key is to apply analytic tech-
niques repeatedly with the hope of obtaining sensible bounds. In
this particular case, much algebraic manipulation is required, so
perseverance is a must.

4. An easy combinatorics problem proposed by Iran, concerning a bal-
ance and a selection of weights. Many approaches are possible, rang-
ing from nice yet simple bijection arguments, to possibly tedious in-
ductive calculations, to applications of sophisticated identities such
as the generating function of Stirling numbers.

5. A medium level number theory problem exploring the divisibility
of a positive integer-valued function. Insights on the underlying
structure of the function are useful and reasonably succinct, but
delicate bounding arguments are possible. This problem was also
proposed by Iran.

6. An incredibly intimidating classical geometry problem from Japan,
and an absolute gem at the same time. The sheer elegance of the
result is only outmatched by its overwhelming difficulty. A great
deal of technical proficiency and pure ingenuity is required to crack
this one.

This set of problems have broken a couple of noteworthy trends. There
hasn’t been an IMO paper with two combinatorics problems since 2001,
and there hasn’t been one with only one geometry problem since 1997.
This is a refreshing change, in the interest of balance amongst the four
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areas of Olympiad mathematics. Remarkably, the windmill problem
barely outlasted a geometric counterpart by a single vote, so both afore-
mentioned trends could have easily continued.

The contest itself consisted of two exams, held on Monday July 18 and
Tuesday July 19. Each exam had three problems and lasted for four and
a half hours. During the first half hour of each exam, the contestants
were allowed to ask the Jury, through written means, for clarifications on
the problems. On the second day, the Jury received nearly 190 questions
from students, as the wording of problem 4 turned out to be particularly
problematic.

After the exams the Leaders and their Deputies spent about two days
assessing the work of the students from their own countries, guided
by marking schemes discussed earlier. A local team of markers called
Coordinators also assessed the papers. They too were guided by the
marking schemes but are allowed some flexibility if, for example, a
Leader brought something to their attention in a contestant’s exam script
which was not covered by the marking scheme. The Team Leader and
Coordinators have to agree on scores for each student of the Leader’s
country in order to finalise scores. This year, the marking schemes were
comprehensive and the Coordinators were well prepared, so the entire
process went smoothly without any major disputes.

The outcome was not entirely as expected. The supposedly medium level
question 2 averaged 0.65 marks, compared to the supposedly difficult
question 3 which averaged 1.05 marks. The easiest was question 1 with
an average of 5.35 marks, followed by question 4 then question 5, which
averaged 4.06 and 3.26 marks respectively. Question 6 was the most
difficult, averaging only 0.32 marks. There were 281 (=49.8 %) medals
awarded, the distributions being 137 (=24.3 %) Bronze, 90 (=16 %)
Silver and 54 (=9.6 %) Gold. The medal cuts were set at 28 for Gold,
22 for Silver and 16 for Bronze. Most Gold medallists solved about four
questions, most Silver medallists solved three questions and most Bronze
medallists solved two and a bit questions. Of those who did not get a
medal, a further 121 contestants received an Honourable Mention for
solving at least one question perfectly.

There were a couple of outstanding performers worth mentioning. The
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first was Lisa Sauermann from Germany, who was the only contestant
to achieve a perfect score of 42. This caps off an illustrious IMO career
for Lisa. With 4 Gold and 1 Silver, she is the most decorated contestant
in the history of the competition, displacing her fellow countryman
Christian Reiher (4 Gold and 1 Bronze) at the top of the IMO Hall
of Fame. The other outstanding performer is the 13-year-old Peruvian
Raúl Arturo Chávez Sarmiento, who solved 5 questions for a score of
35, placing sixth overall. With 1 Gold, 1 Silver and 1 Bronze so far, the
young Raúl has a bright future in front of him, including the possibility
of overtaking Lisa if he chooses to keep coming back.

The awards were presented at the Closing Ceremony. Various media per-
sonnel, sponsor representatives and the Mayor of Amsterdam were there
to congratulate the medal winners for their accomplishments. Special
recognition was given to Lisa Sauermann for her extraordinary IMO
record. She was presented with a laurel wreath and a personal congrat-
ulation from Christian Reiher. Lisa has become a role model for other
girls aspiring to do well at the IMO.

Many thanks to members of IMO 2011 Organising Committee, guides,
coordinators and many behind the scenes staff, crew members and volun-
teers for their outstanding efforts in putting together a truly wonderful
IMO.

The 2011 IMO was supported and organised by the Dutch Ministry of
Education, the National Platform Science & Technology and Google.

The 2012 IMO is scheduled to be held in Mar del Plata, Argentina.

Ivan Guo

Australian IMO Team Leader

AUSTRALIA
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1 IMO Papers

Monday, July 18, 2011
Language: English

First Day

Problem 1. Given any set A = {a1, a2, a3, a4} of four distinct positive
integers, we denote the sum a1 + a2 + a3 + a4 by sA. Let nA denote the
number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai + aj divides sA.
Find all sets A of four distinct positive integers which achieve the largest
possible value of nA.

Problem 2. Let S be a finite set of at least two points in the plane.
Assume that no three points of S are collinear. A windmill is a process
that starts with a line ℓ going through a single point P ∈ S. The line
rotates clockwise about the pivot P until the first time that the line
meets some other point belonging to S. This point, Q, takes over as
the new pivot, and the line now rotates clockwise about Q, until it next
meets a point of S. This process continues indefinitely.

Show that we can choose a point P in S and a line ℓ going through P

such that the resulting windmill uses each point of S as a pivot infinitely
many times.

Problem 3. Let f : R → R be a real-valued function defined on the
set of real numbers that satisfies

f(x+ y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

Time allowed: 4 hours 30 minutes

Each problem is worth 7 points
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Tuesday, July 19, 2011
Language: English

Second Day

Problem 4. Let n > 0 be an integer. We are given a balance and n

weights of weight 20, 21, . . . , 2n−1. We are to place each of the n weights
on the balance, one after another, in such a way that the right pan
is never heavier than the left pan. At each step we choose one of the
weights that has not yet been placed on the balance, and place it on
either the left pan or the right pan, until all of the weights have been
placed.

Determine the number of ways in which this can be done.

Problem 5. Let f be a function from the set of integers to the set
of positive integers. Suppose that, for any two integers m and n, the
difference f(m) − f(n) is divisible by f(m − n). Prove that, for all
integers m and n with f(m) ≤ f(n), the number f(n) is divisible by
f(m).

Problem 6. Let ABC be an acute triangle with circumcircle Γ. Let
ℓ be a tangent line to Γ, and let ℓa, ℓb and ℓc be the lines obtained
by reflecting ℓ in the lines BC,CA and AB, respectively. Show that
the circumcircle of the triangle determined by the lines ℓa, ℓb and ℓc is
tangent to the circle Γ.

Time allowed: 4 hours 30 minutes

Each problem is worth 7 points
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2 Results

Some Country Scores

Rank Country Score
1 China 189
2 U.S.A. 184
3 Singapore 179
4 Russia 161
5 Thailand 160
6 Turkey 159
7 North Korea 157
8 Romania 154
8 Taiwan 154
10 Iran 151
11 Germany 150
12 Japan 147
13 South Korea 144
14 Hong Kong 138
15 Poland 136

Some Country Scores

Rank Country Score
15 Ukraine 136
17 Canada 132
17 U.K. 132
19 Italy 129
20 Bulgaria 121
20 Brazil 121
22 Mexico 120
23 India 119
23 Israel 119
25 Australia 116
25 Hungary 116
25 Serbia 116
28 Netherlands 115
29 Indonesia 114
29 New Zealand 114

Mark Distribution by Question

Mark Q1 Q2 Q3 Q4 Q5 Q6
0 29 391 394 94 106 443
1 17 124 57 120 92 103
2 63 14 34 31 127 7
3 52 2 13 16 20 2
4 18 4 7 8 20 0
5 17 2 3 8 9 3
6 14 5 5 20 20 0
7 354 22 51 267 170 6

Total 564 564 564 564 564 564
Mean 5.35 0.65 1.05 4.06 3.26 0.32
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Distribution of Awards at the 2011 IMO

Country Total Gold Silver Bronze H.M.
Albania 24 0 0 0 1
Argentina 77 1 0 0 4
Armenia (5 members) 61 0 1 0 3
Australia 116 0 3 3 0
Austria 110 0 2 2 2
Azerbaijan 61 0 1 1 1
Bangladesh 50 0 0 1 1
Belarus 113 0 2 3 1
Belgium 88 0 0 4 1
Bolivia (4 members) 17 0 0 0 1
Bosnia and Herzegovina 64 0 0 1 4
Brazil 121 0 3 3 0
Bulgaria 121 0 2 3 1
Canada 132 1 2 3 0
Chile 48 0 0 1 1
China 189 6 0 0 0
Colombia 73 0 0 1 4
Costa Rica (4 members) 57 0 1 0 3
Croatia 110 0 1 5 0
Cyprus 51 0 0 1 1
Czech Republic 101 0 1 3 2
Denmark 76 0 1 1 2
Ecuador 32 0 0 1 0
El Salvador (2 members) 11 0 0 0 0
Estonia 76 0 0 2 3
Finland 68 0 1 0 3
France 111 0 1 4 1
Georgia 68 0 0 2 2
Germany 150 1 3 2 0
Greece 99 1 0 3 1
Guatemala (4 members) 8 0 0 0 0
Honduras (3 members) 21 0 0 0 1
Hong Kong 138 2 1 3 0
Hungary 116 0 2 3 1

69



Mathematics Competitions Vol 24 No 2 2011

Distribution of Awards at the 2011 IMO

Country Total Gold Silver Bronze H.M.
Iceland 48 0 0 0 3
India 119 1 1 2 2
Indonesia 114 0 2 4 0
Iran 151 2 4 0 0
Ireland 26 0 0 0 0
Israel 119 1 0 4 1
Italy 129 1 3 1 1
Ivory Coast 34 0 0 0 2
Japan 147 2 2 2 0
Kazakhstan 105 0 1 3 2
Kosovo 22 0 0 0 1
Kuwait (5 members) 1 0 0 0 0
Kyrgyzstan (5 members) 14 0 0 0 1
Latvia 68 0 1 1 1
Liechtenstein (1 member) 4 0 0 0 0
Lithuania 87 0 0 4 2
Luxembourg 48 0 0 1 2
Macau 71 0 0 2 3
Macedonia (FYR) 38 0 0 1 0
Malaysia 93 1 1 1 2
Mexico 120 0 2 4 0
Moldova 86 0 1 0 4
Mongolia 69 0 0 2 3
Montenegro (4 members) 13 0 0 0 1
Morocco 64 0 1 1 2
Netherlands 115 0 2 3 1
New Zealand 114 0 2 2 2
Nigeria 40 0 0 1 0
North Korea 157 3 3 0 0
Norway 67 0 1 0 3
Pakistan (4 members) 35 0 0 1 1
Panama (1 member) 6 0 0 0 0
Paraguay (5 members) 38 0 0 0 1
Peru 113 1 0 2 3
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Distribution of Awards at the 2011 IMO

Country Total Gold Silver Bronze H.M.
Philippines (5 members) 69 0 0 3 0
Poland 136 2 2 1 1
Portugal 86 1 0 2 1
Puerto Rico (4 members) 32 0 0 0 2
Romania 154 1 5 0 0
Russian Federation 161 2 4 0 0
Saudi Arabia 53 0 0 2 0
Serbia 116 1 2 1 1
Singapore 179 4 1 1 0
Slovakia 111 0 2 3 1
Slovenia 64 0 0 1 3
South Africa 93 0 1 2 2
South Korea 144 2 3 0 1
Spain 83 0 0 3 1
Sri Lanka 49 0 0 1 2
Sweden 69 0 1 0 3
Switzerland 88 0 2 1 1
Syria 14 0 0 0 1
Taiwan 154 2 4 0 0
Tajikistan 68 0 1 0 2
Thailand 160 3 2 1 0
Trinidad and Tobago 29 0 0 0 1
Tunisia 46 0 0 1 1
Turkey 159 3 2 1 0
Turkmenistan 64 0 0 3 1
Ukraine 136 1 2 3 0
United Arab Emirates 1 0 0 0 0
(5 members)
United Kingdom 132 2 1 2 1
United States of America 184 6 0 0 0
Uruguay (4 members) 29 0 0 0 2
Uzbekistan (5 members) 62 0 0 1 2
Venezuela (2 members) 21 0 0 0 2
Vietnam 113 0 0 6 0
Total (564 contestants) 54 90 137 121
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Tournament of Towns

(Selected Problems from the Spring 2011

papers)

Andy Liu

Andy Liu is a professor of mathemat-
ics at the University of Alberta in
Canada. His research interests span
discrete mathematics, geometry, math-
ematics education and mathematics
recreations. He edits the Problem Cor-
ner of the MAA’s magazine Math Hori-

zons. He was the Chair of the Problem
Committee in the 1995 IMO in Canada.
His contribution to the 1994 IMO in
Hong Kong was a major reason for him
being awarded a David Hilbert Inter-
national Award by the World Federa-
tion of National Mathematics Compe-
titions.

1. Each diagonal of a convex quadrilateral divides it into two isosceles
triangles. The two diagonals of the same quadrilateral divide it into
four isosceles triangles. Must this quadrilateral be a square?

2. Worms grow at the rate of 1 metre per hour. When they reach
their maximum length of 1 metre, they stop growing. A full-grown
worm may be dissected into two new worms of arbitrary lengths
totalling 1 metre. Starting with 1 full-grown worm, can one obtain
10 full-grown worms in less than 1 hour?

3. Four perpendiculars are drawn from four vertices of a convex pen-
tagon to the opposite sides. If these four lines pass through the
same point, prove that the perpendicular from the fifth vertex to
the opposite side also passes through this point.

4. Two ants crawl along the sides of the 49 squares of a 7× 7 board.
Each ant passes through all 64 vertices exactly once and returns
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to its starting point. What is the smallest possible number of sides
covered by both ants?

5. In a country, there are 100 towns. Some pairs of towns are joined
by roads. The roads do not intersect one another except meeting
at towns. It is possible to go from any town to any other town by
road. Prove that it is possible to pave some of the roads so that
the number of paved roads at each town is odd.

6. Among a group of programmers, every two either know each other
or do not know each other. Eleven of them are geniuses. Two
companies hire them one at a time, alternately, and may not
hire someone already hired by the other company. There are no
conditions on which programmer a company may hire in the first
round. Thereafter, a company may only hire a programmer who
knows another programmer already hired by that company. Is it
possible for the company which hires second to hire ten of the
geniuses, no matter what the hiring strategy of the other company
may be?

Solutions

1. The answer is no. In the convex quadrilateral ABCD in the dia-
gram below, where the diagonals intersect at E, we have ∠ADB=
∠BDC = ∠DCA = ∠ACB = ∠BAC = ∠ABD = 36◦. Then
∠ADC = ∠DAE = ∠DEA = ∠CEB = ∠CBE = ∠BCD = 72◦.
It follows that all of the triangles ABC, BAD, ACD, BDC,
ABE, BCE, CDE and DAE are isosceles, and yet ABCD is
not a square.

D C

A B

E

2. If we do nothing, we will have 1 full-grown worm with 1 hour to
spare. If we cut the given worm into two of lengths 1

2
and 1

2
, we

will have two full-grown worms with half an hour to spare. If we
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cut the given worm into two of lengths 1

4
and 3

4
, we will have one

full-grown worm and one half-grown worm in a quarter of an hour.
As in the preceding case, we will have three full-grown worms in
another half an hour, so that we have a quarter of an hour to spare.
In the same manner, if we cut the given worm into two of lengths
1

512
and 511

512
, we will have ten full-grown worms with 1

512
of an hour

to spare.

3. Solution by Scott Wang

Let ABCDE be the pentagon. Let BG, CH, DI and EJ be the
altitudes concurrent at O. Let F be the point of intersection of
AO with CD.
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Since the right triangles COJ, JOB and BOI are similars to the
right triangles EOH, HOD and DOG, we have OC ·OH = OE ·

OJ = OB ·OG = OD·OI. Hence trianglesHOI andDOC are also
similar, so that ∠OHI = ∠ODC. Since ∠OHA = 90◦ = ∠OIA,
AHOI is a cyclic quadrilateral. Hence ∠AHI = ∠AOI = ∠DOF .
Now ∠OFD = ∠180◦ − ∠DOF − ∠ODF = 180◦ − ∠OHA −

∠OHI = 90◦.

4. Solution by Desmond Sisson

The eight sides at the four corner vertices must be traversed by
both ants. Along each of the four edges of the board, the middle
four vertices all have degree 3, and must lie on a side traversed by
both ants. To minimize the number of such sides, they must cover
these sixteen vertices in pairs. Hence their number cannot be less
than 8+8=16. The following diagram shows the paths of the two
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ants with exactly 16 sides covered by both, every other side along
the four edges of the board.

5. Solution by Adrian Tang

Let F be the set of towns with an odd number of paved roads and G

be the set of towns with an even number of paved roads. Note that
|F| is even at any time. Initially, |F| = 0. If we have |F| = 100
at some point, the task is accomplished. Suppose |F| < 100.
Then there are at least 2 towns A and B in G. Since the graph is
connected, there exists a tour from A to B, going along the roads
without visiting any town more than once. Interchange the status
of each road on this tour, from paved to unpaved and vice versa.
(This is of course done on the planning map, before any actual
paving is carried out.) Then A and B move from G to F while
all other towns stay in F or G as before. Hence we can make |F|

increase by 2 at a time, until it reaches 100.

6. Solution by Central Jury

Let there be eleven attributes on which the companies rank the
candidates. The ranking of each attribute for each candidate is a
non-negative integer. It turns out that for each candidate, the
sum of the eleven rankings is exactly 100. Moreover, no two
candidates have exactly the same set of rankings, and for each
possible set of rankings, there is such a candidate. The eleven
geniuses are those with a ranking of 100 in one attribute and a
ranking of 0 in every other attribute. Two candidates know each
other if their sets of rankings differ only in two attributes, and
those two rankings differ by 1. Consider candidate A who is the
first hired by the first company. By the pigeonhole principle, the
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ranking of at least one attribute for A is at least 10, and we may
assume that this is the first attribute. The second company hires
the candidate whose ranking in the first attribute is exactly 10
lower than that of A, but exactly 1 higher in each of the other
ten attributes. At this point, the first company has a big edge in
hiring the genius of the first attribute, but the second company
has a small edge in hiring the genius of each of the other ten
attributes. The second company concedes the genius of the first
attribute to the first company, but aims to hire the other ten
geniuses by maintaining these small advantages. Note that among
the candidates hired by each company, the highest ranking in any
attribute can only increase by 1 with each new hiring. Whenever
the first company makes a hiring, the second company will respond
by hiring a candidate whose rankings change in the same attributes
and in the same directions.

Andy Liu

University of Alberta

CANADA

E-mail: aliumath@telus.net
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 NEW BOOK
    

Australian Mathematical Olympiads Book 2 1996 – 2011
H Lausch, A Di Pasquale, DC Hunt & PJ Taylor

This book is the second in the series and contains a complete 
collection of all Australian Mathematical Olympiad papers 
from 1996 to 2011. Solutions to all problems are included 
and in a number of cases alternative solutions are offered.

Bundles of Past AMC Papers

Past Australian Mathematics Competition papers are packaged into bundles of ten 
identical papers in each of the Junior, Intermediate and Senior divisions of the 
Competition. Schools find these sets extremely valuable in setting their students 
miscellaneous exercises.

AMC Solutions and Statistics
Edited by PJ Taylor

This book provides, each year, a record of the AMC questions and solutions, and details 
of medallists and prize winners. It also provides a unique source of information for 
teachers and students alike, with items such as levels of Australian response rates and 
analyses including discriminatory powers and difficulty factors.

Australian Mathematics Competition Book 1 1978-1984
Edited by W Atkins, J Edwards, D King, PJ O’Halloran & PJ Taylor

This 258-page book consists of over 500 questions, solutions and statistics from the AMC 
papers of 1978-84. The questions are grouped by topic and ranked in order of difficulty.  
The book is a powerful tool for motivating and challenging students of all levels. A must 
for every mathematics teacher and every school library. 

These books are a valuable resource for 
the school library shelf, for students 
wanting to improve their understanding 
and competence in mathematics, and for 
the teacher who is looking for relevant, 
interesting and challenging questions and 
enrichment material.

To attain an appropriate level of achievement 
in mathematics, students require talent in 
combination with commitment and self-
discipline. The following books have been 
published by the AMT to provide a guide 
for mathematically dedicated students  
and teachers.

Useful Problem-Solving Books from AMT Publications



Australian Mathematics Competition Book 2 1985-1991
Edited by PJ O’Halloran, G Pollard & PJ Taylor

Over 250 pages of challenging questions and solutions from the Australian Mathematics 
Competition papers from 1985-1991.

Australian Mathematics Competition Book 3 1992-1998 
W Atkins, JE Munro & PJ Taylor 

More challenging questions and solutions from the Australian Mathematics Competition 
papers from 1992-1998.

Australian Mathematics Competition Book 4 1999-2005 
W Atkins & PJ Taylor 

More challenging questions and solutions from the Australian Mathematics Competition 
papers from 1999-2005.

Australian Mathematics Competition Primary Problems & Solutions Book 1 
2004–2008
W Atkins & PJ Taylor
This book consists of questions and full solutions from past AMC papers and is designed 
for use with students in Middle and Upper Primary. The questions are arranged in papers 
of 10 and are presented ready to be photocopied for classroom use.

Problem Solving via the AMC
Edited by Warren Atkins

This 210-page book consists of a development of techniques for solving approximately 
150 problems that have been set in the Australian Mathematics Competition. These 
problems have been selected from topics such as Geometry, Motion, Diophantine 
Equations and Counting Techniques.

Methods of Problem Solving, Book 1
Edited by JB Tabov & PJ Taylor

This book introduces the student aspiring to Olympiad competition to particular 
mathematical problem solving techniques. The book contains formal treatments of 
methods which may be familiar or introduce the student to new, sometimes powerful 
techniques.

Methods of Problem Solving, Book 2 
JB Tabov & PJ Taylor

After the success of Book 1, the authors have written Book 2 with the same format but 
five new topics. These are the Pigeonhole Principle, Discrete Optimisation, Homothety, 
the AM-GM Inequality and the Extremal Element Principle.

Mathematical Toolchest
Edited by AW Plank & N Williams

This 120-page book is intended for talented or interested secondary school students, 
who are keen to develop their mathematical knowledge and to acquire new skills. 
Most of the topics are enrichment material outside the normal school syllabus, and are 
accessible to enthusiastic year 10 students.



International Mathematics — Tournament of Towns (1980-1984) 
Edited by PJ Taylor

The International Mathematics Tournament of the Towns is a problem-solving 
competition in which teams from different cities are handicapped according to the 
population of the city. Ranking only behind the International Mathematical Olympiad, 
this competition had its origins in Eastern Europe (as did the Olympiad) but is now 
open to cities throughout the world. This 115-page book contains problems and 
solutions from past papers for 1980-1984.

International Mathematics — Tournament of Towns (1984-1989) 
Edited by PJ Taylor 

More challenging questions and solutions from the International Mathematics 
Tournament of the Towns competitions. This 180-page book contains problems and 
solutions from 1984-1989.

International Mathematics — Tournament of Towns (1989-1993) 
Edited by PJ Taylor 

This 200-page book contains problems and solutions from the 1989-1993 Tournaments.

International Mathematics — Tournament of Towns (1993-1997) 
Edited by PJ Taylor 

This 180-page book contains problems and solutions from the 1993-1997 Tournaments.

International Mathematics — Tournament of Towns (1997-2002) 
Edited by AM Storozhev

This 214-page book contains problems and solutions from the 1997-2002 Tournaments.

International Mathematics — Tournament of Towns (2002-2007) 
Edited by A Liu & PJ Taylor

This 222-page book contains problems and solutions from the 1997-2002 Tournaments.

Challenge! 1991 – 1998 
Edited by JB Henry, J Dowsey, AR Edwards, L Mottershead, A Nakos, G Vardaro & PJ 
Taylor  
This book is a major reprint of the original Challenge! (1991-1995) published in 1997. 
It contains the problems and full solutions to all Junior and Intermediate problems set 
in the Mathematics Challenge for Young Australians Challenge Stage, exactly as they 
were proposed at the time. It is expanded to cover the years up to 1998, has more 
advanced typography and makes use of colour. It is highly recommended as a resource 
book for classes from Years 7 to 10 and also for students who wish to develop their 
problem-solving skills. Most of the problems are graded within to allow students to 
access an easier idea before developing through a few levels.

Challenge! 1999—2006 Book 2 
JB Henry & PJ Taylor
This is the second book of the series and contains the problems and full solutions 
to all Junior and Intermediate problems set in the Mathematics Challenge for Young 



Australians Challenge Stage, exactly as they were proposed at the time. They are highly 
recommended as a resource book for classes from Years 7 to 10 and also for students 
who wish to develop their problem-solving skills. Most of the problems are graded 
within to allow students to access an easier idea before developing through a few levels.

USSR Mathematical Olympiads 1989 – 1992  
Edited by AM Slinko

Arkadii Slinko, now at the University of Auckland, was one of the leading figures of the 
USSR Mathematical Olympiad Committee during the last years before democratisation. 
This book brings together the problems and solutions of the last four years of the 
All-Union Mathematics Olympiads. Not only are the problems and solutions highly 
expository but the book is worth reading alone for the fascinating history of 
mathematics competitions to be found in the introduction. 

Australian Mathematical Olympiads Book 1 1979 – 1995
H Lausch & PJ Taylor

This book is a complete collection of all Australian Mathematical Olympiad papers from 
the first competition in 1979-1995. Solutions to all problems are included and in a 
number of cases alternative solutions are offered.

Chinese Mathematics Competitions and Olympiads Book 1 1981-1993
A Liu

This book contains the papers and solutions of two contests, the Chinese National High 
School Competition and the Chinese Mathematical Olympiad. China has an outstanding 
record in the IMO and this book contains the problems that were used in identifying 
the team candidates and selecting the Chinese team. The problems are meticulously 
constructed, many with distinctive flavour. They come in all levels of difficulty, from 
the relatively basic to the most challenging.

Asian Pacific Mathematics Olympiads 1989-2000
H Lausch & C Bosch-Giral 

With innovative regulations and procedures, the APMO has become a model for regional 
competitions around the world where costs and logistics are serious considerations. This 
159 page book reports the first twelve years of this competition, including sections on 
its early history, problems, solutions and statistics.

Polish and Austrian Mathematical Olympiads 1981-1995
ME Kuczma & E Windischbacher

Poland and Austria hold some of the strongest traditions of mathematical Olympiads 
in Europe even holding a joint Olympiad of high quality. This book contains some 
of the best problems from the national Olympiads. All problems have two or more 
independent solutions, indicating their richness as mathematical problems.

Seeking Solutions
JC Burns

Professor John Burns, formerly Professor of Mathematics at the Royal Military 
College, Duntroon, and Foundation Member of the Australian Mathematical Olympiad 



Committee, solves the problems of the 1988, 1989 and 1990 International Mathematical 
Olympiads. Unlike other books in which only complete solutions are given, John Burns 
describes the complete thought processes he went through when solving the problems 
from scratch. Written in an inimitable and sensitive style, this book is a must for a 
student planning on developing the ability to solve advanced mathematics problems.

101 Problems in Algebra from the Training of the USA IMO Team
Edited by T Andreescu & Z Feng

This book contains one hundred and one highly rated problems used in training and testing  
the USA International Mathematical Olympiad team. The problems are carefully graded, 
ranging from quite accessible towards quite challenging. The problems have been 
well developed and are highly recommended to any student aspiring to participate at 
National or International Mathematical Olympiads.

Hungary Israel Mathematics Competition 
S Gueron

The Hungary Israel Mathematics Competition commenced in 1990 when diplomatic 
relations between the two countries were in their infancy. This 181-page book 
summarizes the first 12 years of the competition (1990 to 2001) and includes the 
problems and complete solutions. The book is directed at mathematics lovers, problem- 
solving enthusiasts and students who wish to improve their competition skills. No 
special or advanced knowledge is required beyond that of the typical IMO contestant 
and the book includes a glossary explaining the terms and theorems which are not 
standard that have been used in the book.

Chinese Mathematics Competitions and Olympiads Book 2 1993-2001
A Liu
This book is a continuation of the earlier volume and covers the years 1993 to 2001.

Bulgarian Mathematics Competition 1992-2001
BJ Lazarov, JB Tabov, PJ Taylor & A Storozhev

The Bulgarian Mathematics Competition has become one of the most difficult and 
interesting competitions in the world. It is unique in structure combining mathematics 
and informatics problems in a multi-choice format. This book covers the first ten 
years of the competition complete with answers and solutions. Students of average 
ability and with an interest in the subject should be able to access this book and find 
a challenge.

International Mathematical Talent Search Part 1 and Part2
G Berzsenyi

George Berzsenyi sought to emulate KöMaL (the long-established Hungarian journal) 
in fostering a problem-solving program in talent development, first with the USA 
Mathematical Talent Search and then the International Mathematical Talent Search 
(IMTS). Part 1 contains the problems and solutions of the first five years (1991-1996) 
of the IMTS, plus an appendix of earlier problems and solutions of the USAMTS. Part 
2 contains the problems and solutions of rounds 21-44 of the IMTS. These books are 
aimed at advanced, senior students at Year 10 level and above.



Mathematical Contests – Australian Scene  
Edited by PJ Brown, A Di Pasquale & K McAvaney

These books provide an annual record of the Australian Mathematical Olympiad 
Committee’s identification, testing and selection procedures for the Australian team 
at each International Mathematical Olympiad. The books consist of the questions, 
solutions, results and statistics for: Australian Intermediate Mathematics Olympiad 
(formerly AMOC Intermediate Olympiad), AMOC Senior Contest, Australian Mathematics 
Olympiad, Asian-Pacific Mathematics Olympiad, International Mathematical Olympiad, 
and Mathematical Challenge for Young Australians Challenge Stage.

Mathematics Competitions
Edited by J  Švrcek

This bi-annual journal is published by AMT Publishing on behalf of the World Federation 
of National Mathematics Competitions. It contains articles of interest to academics and 
teachers around the world who run mathematics competitions, including articles on 
actual competitions, results from competitions, and mathematical and historical articles 
which may be of interest to those associated with competitions. 

Problems to Solve in Middle School Mathematics
B Henry, L Mottershead, A Edwards, J McIntosh, A Nakos, K Sims, A Thomas & G 
Vardaro

This collection of problems is designed for use with students in years 5 to 8. Each of 
the 65 problems is presented ready to be photocopied for classroom use. With each 
problem there are teacher’s notes and fully worked solutions. Some problems have 
extension problems presented with the teacher’s notes. The problems are arranged in 
topics (Number, Counting, Space and Number, Space, Measurement, Time, Logic) and 
are roughly in order of difficulty within each topic. There is a chart suggesting which 
problem-solving strategies could be used with each problem.

Teaching and Assessing Working Mathematically Book 1 & Book 2
Elena Stoyanova

These books present ready-to-use materials that challenge students understanding of 
mathematics. In exercises and short assessments, working mathematically processes 
are linked with curriculum content and problem-solving strategies. The books contain 
complete solutions and are suitable for mathematically able students in Years 3 to 4 
(Book 1) and Years 5 to 8 ( Book 2).

A Mathematical Olympiad Primer  
G Smith

This accessible text will enable enthusiastic students to enter the world of secondary 
school mathematics competitions with confidence. This is an ideal book for senior high 
school students who aspire to advance from school mathematics to solving olympiad-
style problems. The author is the leader of the British IMO team.



ENRICHMENT STUDENT NOTES

The Enrichment Stage of the Mathematics Challenge for Young Australians (sponsored 
by the Dept of Innovation, Industry, Science and Research) contains formal course 
work as part of a structured, in-school program. The Student Notes are supplied to 
students enrolled in the program along with other materials provided to their teacher. 
We are making these Notes available as a text book to interested parties for whom the 
program is not available.

NEWTON: Recommended for students of about Year 5 and 6, topics include 
polyominoes, arithmetricks, polyhedra, patterns and divisibility.

DIRICHLET: Recommended for students of Year 6 or 7, topics include problem-solving 
techniques, tessellations, base five arithmetic, pattern seeking, rates and number 
theory.	

EULER: Recommended for students of about Year 7, topics include elementary number 
theory and geometry, counting and pigeonhole principle.	

GAUSS: Recommended for students of about Year 8, topics include Pythagoras’ 
Theorem, Diophantine equations, counting techniques and congruences.	

NOETHER: Recommended for students of about Year 9, topics include number theory, 
sequences and series, inequalities and circle geometry.

PÓLYA: Recommended for students of about Year 10, topics include polynomials, 
algebra, inequalities and Euclidean geometry.
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Leonhard Euler T–shirt

The Leonhard Euler t-shirts depict a brightly coloured cartoon representation of Euler’s 
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The Carl Friedrich Gauss t-shirts celebrate Gauss’ discovery of the construction of a 
17-gon by straight edge and compass, depicted by a brightly coloured cartoon. 

Emmy Noether T–shirt

The Emmy Noether t-shirts show a schematic representation of her work on algebraic 
structures in the form of a brightly coloured cartoon. 

George Pólya T–shirt

George Pólya was one of the most significant mathematicians of the 20th century, both as  
a researcher, where he made many significant discoveries, and as a teacher and inspiration  
to others. This t-shirt features one of Pólya’s most famous theorems, the Necklace 
Theorem, which he discovered while working on mathematical aspects of chemical 
structure. 



Peter Gustav Lejeune Dirichlet T–shirt

Dirichlet formulated the Pigeonhole Principle, often known as Dirichlet’s Principle, 
which states: “If there are p pigeons placed in h holes and p>h then there must be at 
least one pigeonhole containing at least 2 pigeons.”  The t-shirt has a bright cartoon 
representation of this principle. 

Alan Mathison Turing T-shirt

The Alan Mathison Turing t-shirt depicts a colourful design representing Turing’s 
computing machines which were the first computers.  
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All the above publications are available from AMT Publishing and can be purchased 
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The Australian Mathematics Trust
The Trust, of which the University of Canberra is Trustee, is a not-for-profit 
organisation whose mission is to enable students to achieve their full intellectual 
potential in mathematics. Its strengths are based upon:

•	 a network of dedicated mathematicians and teachers who work in a voluntary 
capacity supporting the activities of the Trust;

•	 the quality, freshness and variety of its questions in the Australian Mathematics 
Competition, the Mathematics Challenge for Young Australians, and other Trust 
contests;

•	 the production of valued, accessible mathematics materials; 
•	 dedication to the concept of solidarity in education;
•	 credibility and acceptance by educationalists and the community in general 

whether locally, nationally or internationally; and
•	 a close association with the Australian Academy of Science and professional 
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