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The aims of the Federation are:–

1. to promote excellence in, and research associated with,
mathematics education through the use of school math-
ematics competitions;

2. to promote meetings and conferences where persons
interested in mathematics contests can exchange and
develop ideas for use in their countries;

3. to provide opportunities for the exchanging of information
for mathematics education through published material,
notably through the Journal of the Federation;

4. to recognize through the WFNMC Awards system persons
who have made notable contributions to mathematics
education through mathematical challenge around the
world;

5. to organize assistance provided by countries with developed
systems for competitions for countries attempting to
develop competitions;

6. to promote mathematics and to encourage young mathe-
maticians.
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From the President

The recipients of the “Paul Erdös” Federation Award for the year 2008
are now known. The decision came shortly after the last volume of the
journal was published in December 2007. According to the regulations
of the Federation, the Paul Erdös Award is given every two years to up
to three recipients. The procedure includes several phases: nomination,
refereeing, assessment by the Awards Committee and final approval of
the award recipients by the Executive Committee of the Federation. The
Awards Committee chaired by Peter Taylor proposed and the Executive
Committee approved the following persons as recipients of Paul Erdös
Award for 2008:

– Hans-Dietrich Gronau, Rostock, Germany,

– Bruce Henry, Melbourne, Australia,

– Leou Shian, Kaohsiung, Taiwan.

Congratulations to the recipients for the well-deserved Award! More
information about the outstanding achievements of these colleagues can
be found at http://www.amt.canberra.edu.au/wfnmcann08.html . The
Award Ceremony will take place during the International Congress on
Mathematical Education in Monterrey, Mexico (July 6–13 2008).

This is the last time I address you as President of WFNMC. At the
next business meeting of the Federation during ICME 11 in Monterrey,
Mexico, new leadership of the Federation (including President, Vice-
Presidents, Publications Officer, Secretary and members of Standing
Committees) will be elected. This is why I cannot resist the temptation
of presenting in brief my personal view on what the Federation is
nowadays and what has been done in the period 2004–2008.

TheWorld Federation of National Mathematics Competitions (WFNMC)
appeared as a natural response to the need for international collaboration
in the field of Mathematics Competitions. It was founded in 1984 during
the Fifth International Congress on Mathematical Education (ICME 5)
held in Adelaide, Australia, and became an Affiliated Study Group of
ICMI in 1994.
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The name of the Federation leaves the impression that its major goals
are related to competitions only. To some extent, this might have been
the case in the earlier stages of development of the organization. In 1988,
on page 2 of Vol. 1, No. 1 of this journal, the following statement was
published:

The foundation members of the Federation hope that it will
provide a focal point for people interested in, and concerned with,
running national mathematics competitions; that it will become a
resource centre for exchanging information and ideas on national
competitions; and that it will create and cement professional links
between mathematicians around the world.

Later the vision for the Federation’s role gradually shifted to a broader
understanding of the goals. The official viewpoint is now expressed in the
preamble of the Federation’s Constitution (approved in 1996 at ICME-8
in Seville, Spain, and amended at ICME-10 in Copenhagen, 2004):

The World Federation of National Mathematics Competitions is a
voluntary organization, created through the inspiration of Professor
Peter O’Halloran of Australia, that aims to promote excellence in
mathematics education and to provide those persons interested in
promoting mathematics education through mathematics contests an
opportunity of meeting and exchanging information.

An even wider viewpoint on the goals of the Federation is outlined in the
Policy Statement adopted at the Federation’s Conference in Melbourne,
Australia in 2002:

The scope of activities of interest to the WFNMC, although centered
on competitions for students of all levels (primary, secondary and
tertiary), is much broader than the competitions themselves. The
WFNMC aims to provide a vehicle for educators to exchange
information on a number of activities related to mathematics and
mathematics learning. . .

The major activities of the Federation in the period 2004–2008 were in
full compliance with the mentioned goals. More specifically, the activities
included:
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– regular conferences (every even-numbered year after ICME) with
the last one taking place in Cambridge, England, 22–28 July 2006

– active participation in Discussion Groups and Topic Study Groups
at ICMEs

– recognition (through the Paul Erdös Award) of persons with out-
standing achievements in the detection, motivation and develop-
ment of talented young people

– regular publication (twice yearly) of this Journal and continuous
development and maintenance of the highly informative website of
the Federation (see http://www.amt.canberra.edu.au/wfnmc.html):
in particular, the site contains the above mentioned versions of
Federation’s Constitution and the Policy Statement

– participation in projects initiated and supported by other organi-
zations: recent examples are the just completed ICMI Study 16,
and the project MATHEU supported by the European Community
within the framework of the Socrates Programme (see correspond-
ingly http://www.amt.edu.au/icmis16.html and
http://www.matheu.eu)

– regular business meetings of the Federation where organizational
matters are considered

– opportunities for competition-related activities in the field of
Informatics.

Further information about the goals, the essence and the history of
WFNMC could be found in the official website of the Symposium on
the occasion of the 100th Anniversary of ICMI (Rome, 5–8 March
2008) http://www.icmihistory.unito.it/wfnmc.php. Further information
(arguments on the role of competitions for mathematics education, for
attracting talent to science, for educational institutions and for the
society as a whole) is contained in the invited lecture presented at Section
19 “Mathematics Education and Popularization of Mathematics” at the
International Congress of Mathematicians in Madrid, 2006 .

Finally, I would like to express my deepest gratitude to all the members
of the current leadership of the Federation for their support, dedication
and engagement with the realization of the goals of the Federation in
the period 2004–2008. Special thanks are due also to the Australian
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Mathematics Trust. Without its firm and permanent support the
Federation would have never reached its current status.

Petar S. Kenderov
President of WFNMC
June 2008
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From the Editor

Welcome to Mathematics Competitions Vol. 21, No. 1.

Again I would like to thank the Australian Mathematics Trust for
continued support, without which each issue of the journal could not be
published, and in particular Heather Sommariva, Bernadette Webster
and Pavel Calábek for their assistance in the preparation of this issue.

Submission of articles:
The journal Mathematics Competitions is interested in receiving articles
dealing with mathematics competitions, not only at national and
international level, but also at regional and primary school level. There
are many readers in different countries interested in these different levels
of competitions.

• The journal traditionally contains many different kinds of articles,
including reports, analyses of competition problems and the
presentation of interesting mathematics arising from competition
problems. Potential authors are encouraged to submit articles of
all kinds.

• To maintain and improve the quality of the journal and its
usefulness to those involved in mathematics competitions, all
articles are subject to review and comment by one or more
competent referees. The precise criteria used will depend on
the type of article, but can be summarised by saying that an
article accepted must be correct and appropriate, the content
accurate and interesting, and, where the focus is mathematical, the
mathematics fresh and well presented. This editorial and refereeing
process is designed to help improve those articles which deserve to
be published.

At the outset, the most important thing is that if you have anything
to contribute on any aspect of mathematics competitions at any level,
local, regional or national, we would welcome your contribution.
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Articles should be submitted in English, with a black and white
photograph and a short profile of the author. Alternatively, the article
can be submitted on an IBM PC compatible disk or a Macintosh disk.
We prefere LATEX or TEX format of contributions, but any text file will
be helpful.

Articles, and correspondence, can also be forwarded to the editor by mail
to

The Editor, Mathematics Competitions
Australian Mathematics Trust
University of Canberra ACT 2601
AUSTRALIA

or to

Dr Jaroslav Švrček
Dept. of Algebra and Geometry
Palacky University of Olomouc
Tomkova 40
779 00 OLOMOUC
CZECH REPUBLIC

svrcek@inf.upol.cz

Jaroslav Švrček,
June 2008
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World Youth Mathematics Intercity

Competition

Simon Chua, Andy Liu & Bin Xiong

Simon Chua is the founder and pres-
ident of the Mathematics Trainers’
Guild, Philippines. He was the first
Filipino to win the Paul Erdös Award
from the World Federation of National
Mathematics Competitions for his dis-
tinguished and sustained contribution
to the enrichment of mathematics ed-
ucation in the Philippines. His am-
bition is to transform all mathemat-
ics teachers in the Philippines to good
mathematics educators, so that more
Filipino students can achieve interna-
tional recognition in the field of math-
ematics.

Andy Liu is a professor of mathemat-
ics at the University of Alberta in
Canada. His research interests span
discrete mathematics, geometry, math-
ematics education and mathematics
recreations. He edits the Problem Cor-
ner of the MAA’s magazine Math Hori-
zons. He was the Chair of the Problem
Committee in the 1995 IMO in Canada.
His contribution to the 1994 IMO in
Hong Kong was a major reason for him
being awarded a David Hilbert Inter-
national Award by the World Federa-
tion of National Mathematics Compe-
titions. He has trained students in all
six continents.
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Bin Xiong is a professor of mathemat-
ics at the East China Normal Univer-
sity. His research interest is in prob-
lem solving and gifted education. He
is a member of the Chinese Mathe-
matical Olympiad committee and the
Problem Subcommittee. He had served
as the leader of the national team
at the 2005 International Mathemat-
ical Olympiad in Mexico. He had
been a trainer at the national camp
many times. He is involved in the Na-
tional Junior High School Competition,
the National High School Mathemat-
ics Competition, the Western China
Mathematical Olympiad and the Girls’
Mathematical Olympiad.

The World Youth Mathematics Intercity Competition (WYMIC) was
founded in 1999 by Prof. Hsin Leou of the Kaohsiung National Normal
University in Taiwan. It was designed as an International Mathematical
Olympiad for junior high school students. Each team consists of a leader,
a deputy leader and four contestants. They represent their city rather
than their country, downplaying politics.

For the first two years, the contest was actually held in Kaohsiung, and
the participating teams were all from South East Asia. The hosts in
2001 and 2002 were the Philippines and India, respectively. It was not
held in 2003 during the height of the SARS scare. In 2004, the host was
Macau.

In 2005, the contest returned to Kaohsiung. Much progress has been
made since the beginning. China had joined the ranks, and the Chinese
city of Wen Zhou hosted the 2006 contest. In 2007, when the contest was
held in Chang Chun, China, there were sixty-five teams, including those
from Canada, Iran, South Africa and the United States of America.

There is now a permanent WYMIC board. The president is Mr. Wen-
Hsien Sun of Chiu Chang Mathematics Foundation in Taipei, and the
secretary is Mr. Simon Chua of the Mathematics Trainers’ Guild in
Zamboanga. Added to the board each year are the local organizing
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committee and the local problem committee. Prof. Zonghu Qiu of
Academia Sinica in Beijing is the advisor for the former, and Prof. Andy
Liu and Prof. Bin Xiong are advisors for the latter.

The event typically lasts five days in late July. Day 1 is for arrival. Day
2 is taken up with registration, the opening ceremony and team leader
meetings. Day 3 is the actual competition, with an individual contest in
the morning and a team contest in the afternoon. Day 4 is set aside for
excursion, with a banquet in the evening. Following the closing ceremony
on Day 5, the students depart. Slight variation occur from year to year.

Gold, silver and bronze medals are awarded for the individual contest,
as well as honorable mentions. The teams are drawn into a number of
groups. Within each group, gold, silver and bronze medals are awarded
for the team contest. A second set of medals are awarded on the basis
of the sum of the best three scores in the individual contest. Finally,
a team is declared the grand champion, based on the sum of these two
team scores. The next two teams also receive trophies. In addition, there
are two non-academic team awards, one for the best behaviour and one
for popularity.

A most special feature of the WYMIC is the Cultural Evening. Each
team must perform on stage for about five minutes, to showcase
their ethnic identities. The performances vary from instrumental and
choral music to power-point presentations of scenery. This cements
international friendship and fosters mutual understanding. Two more
team awards are handed out, one for the best performance and one for
innovation.

In 2009, the contest will be hosted by South Africa in Durban.
It is a golden opportunity for European and other African teams
to join in. For further information, contact Prof. Gwen Williams
at gwilliams@telkomsa.net. To conclude this paper, we append the
problems used in the 2007 contest.
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1 Individual Contest

Time limit: 120 minutes 2007/7/23 Changchun, China

Section I

In this section, there are 12 questions, fill in the correct answers in the
spaces provided at the end of each question. Each correct answer is worth
5 points.

1. Let An be the average of the multiples of n between 1 and 101.
Which is the largest among A2, A3, A4, A5 and A6?

Solution. The smallest multiple of n is of course n. Denote by an

the largest multiple of n not exceeding 101. Then An = (n+an)/2.
Hence A2 = A3 = 51, A4 = 52, A5 = 52.5 and A6 = 51, and the
largest one is A5.

2. It is a dark and stormy night. Four people must evacuate from an
island to the mainland. The only link is a narrow bridge which
allows passage of two people at a time. Moreover, the bridge must
be illuminated, and the four people have only one lantern among
them. After each passage to the mainland, if there are still people
on the island, someone must bring the lantern back. Crossing the
bridge individually, the four people take 2, 4, 8 and 16 minutes
respectively. Crossing the bridge in pairs, the slower speed is used.
What is the minimum time for the whole evacuation?

Solution. Exactly five passages are required, three pairs to the
mainland and two individuals back to the island. Let the fastest
two people cross first. One of them brings back the lantern.
Then the slowest two people cross, and the fastest person on the
mainland brings back the lantern. The final passage is the same as
the first. The total time is 4+2+16+4+4 = 30 minutes. To show
that this is minimum, note that the three passages in pairs take at
least 16 + 4 + 4 = 24 minutes, and the two passages individually
take at least 4 + 2 = 6 minutes.

3. In triangle ABC, E is a point on AC and F is a point on AB.
BE and CF intersect at D. If the areas of triangles BDF , BCD
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and CDE are 3, 7 and 7 respectively, what is the area of the
quadrilateral AEDF?

Solution. Since triangles BCD and CDE have equal areas,
BD=DE. Hence the area of triangle DEF is also 3. Let the
area of triangle EFA be x. Then x

6 =
AF
BF = x+3+7

3+7 . It follows
that 10x = 6x+ 60 so that x = 15. The area of the quadrilateral
AEDF is 15 + 3 = 18.

4. A regiment had 48 soldiers but only half of them had uniforms.
During inspection, they form a 6 × 8 rectangle, and it was just
enough to conceal in its interior everyone without a uniform. Later,
some new soldiers joined the regiment, but again only half of them
had uniforms. During the next inspection, they used a different
rectangular formation, again just enough to conceal in its interior
everyone without a uniform. How many new soldiers joined the
regiment?

Solution. Let the dimensions of the rectangle be x by y, with
x ≤ y. Then the number of soldiers on the outside is 2x + 2y − 4
while the number of those in the interior is (x − 2)(y − 2). From
xy − 2x − 2y + 4 = 2x + 2y − 4, we have (x − 4)(y − 4) =
xy − 4x − 4y + 16 = 8. If x − 4 = 2 and y − 4 = 4, we obtain
the original 6 × 8 rectangle. If x − 4 = 1 and y − 4 = 8, we
obtain the new 5× 12 rectangle. Thus the number of new soldiers
is 5 · 12− 6 · 8 = 12.
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5. The sum of 2008 consecutive positive integers is a perfect square.
What is the minimum value of the largest of these integers?

Solution. Let a be the smallest of these integers. Then

a+ (a+ 1) + (a+ 2) + . . . + (a+ 2007) = 251 · (2a+ 2007) · 22.

In order for this to be a perfect square, we must have 2a+2007 =
251n2 for some positive integer n. For n = 1 or 2, a is negative.
For n = 3, we have a = 126 so that a+ 2007 = 2133 is the desired
minimum value.

6. The diagram shows two identical triangular pieces of paper A and
B. The side lengths of each triangle are 3, 4 and 5. Each triangle is
folded along a line through a vertex, so that the two sides meeting
at this vertex coincide. The regions not covered by the folded
parts have respective areas SA and SB. If SA + SB = 39 square
centimetres, find the area of the original triangular piece of paper.

Solution. In the first diagram, the ratio of the areas of the shaded
triangle and one of the unshaded triangles is (5− 3) : 3 so that SA

is one-quarter of the area of the whole triangle. In the second
diagram, the ratio of the areas of the shaded triangle and one of
the unshaded triangles is (5− 4) : 4 so that SB is one-ninth of the
area of the whole triangle. Now 1

4 +
1
9 =

13
36 . Hence the area of the

whole triangle is 36
13 · 39 = 108 square centimetres.

7. Find the largest positive integer n such that 31024 − 1 is divisible
by 2n.

Solution. Note that

31024 − 1 = (3512 + 1)(3256 + 1)(3128 + 1) . . . (3 + 1)(3− 1).
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All 11 factors are even, and 3 + 1 is a multiple of 4. Clearly 3− 1
is not divisible by 4. We claim that neither is any of the other 9
factors. When the square of an odd number is divided by 4, the
remainder is always 1. Adding 1 makes the remainder 2, justifying
the claim. Hence the maximum value of n is 12.

8. A farmer has four straight fences, with respective lengths 1, 4, 7
and 8 metres. What is the maximum area of the quadrilateral the
farmer can enclose?

Solution. We may assume that the sides of lengths 1 and 8 are
adjacent sides of the quadrilateral, as otherwise we can flip over
the shaded triangle in the first diagram. Now the quadrilateral
may be divided into two triangles as shown in the second diagram.
In each triangle, two sides have fixed length. Hence its area is
maximum if these two sides are perpendicular to each other. Since
12+82 = 42+72, both maxima can be achieved simultaneously. In
that case, the area of the unshaded triangle is 4 and the area of the
shaded triangle is 14. Hence the maximum area of the quadrilateral
is 18 square metres.

9. In the diagram (on the next page), PA = QB = PC = QC =
PD = QD = 1, CE = CF = EF and EA = BF = 2AB.
Determine BD.

Solution. Let M be the midpoint of EF . By symmetry, D lies
on CM . Let BM = x. Then FM = 5x, CF = 10x, CM = 5

√
5x

and BC = 2
√
19x. It follows that AB

BC = 1√
19
. Now Q is the

circumcentre of triangle BCD. Hence ∠BQD = 2∠BCD =
∠BCA. Since both QDB and CAB are isosceles triangles, they
are similar to each other. It follows that BD

QB = AB
BC =

1√
19
, so that
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BD = 1√
19
.

10. Each of the numbers 2, 3, 4, 5, 6, 7, 8 and 9 is used once to fill in
one of the boxes in the equation below to make it correct. Of the
three fractions being added, what is the value of the largest one?

Solution. We may assume that the second numerator is 5 and the
third 7. If either 5 or 7 appears in a denominator, it can never be
neutralized. Since the least common multiple of the two remaining
numbers is 8 × 9 = 72, we use 1

72 as the unit of measurement.
Now one of the three fractions must be close to 1. This can only
be 5

2×3 or
7

2×4 . In the first case, we are short 12 units. Of this,
7 must come from the third fraction so that 5 must come from
the first fraction. This is impossible because the first fraction has
numerator 1 and 5 does not divide 72. In the second case, we are
short 9 units. Of this, 5 must come from the second fraction so
that 4 must come from the third. This can be achieved as shown
in the equation below. Hence the largest of the three fractions has
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value 7
8 .

11. Let x be a positive number. Denote by [x] the integer part of x
and by {x} the decimal part of x. Find the sum of all positive
numbers satisfying 5{x}+ 0.2[x] = 25.
Solution. The given equation may be rewritten as {x} = 125−[x]

25 .
From 0 ≤ {x} < 1, we have 100 < [x] ≤ 125. For each solution
x, x = [x] + {x} = 5 + 24

25 [x]. It follows that the desired sum is
5(25) + (24/25)(101+ 102 + 103 + . . . + 125) = 2837.

12. A positive integer n is said to be good if there exists a perfect
square whose sum of digits in base 10 is equal to n. For instance,
13 is good because 72 = 49 and 4 + 9 = 13. How many good
numbers are among 1, 2, 3, . . . , 2007?

Solution. If a positive integer is a multiple of 3, then its square
is a multiple of 9, and so is the sum of the digits of the square. If
a positive integer is not a multiple of 3, then its square is 1 more
than a multiple of 3, and so is the sum of the digits of the square.
Now the square of 9 . . . 9 with m 9s is 9 . . . 980 . . .01, with m − 1
digits 9 and 0. Its digit sum is 9m. Hence all multiples of 9 are
good, and there are 2007

9 = 223 of them not exceeding 2007. On
the other hand, the square of 3 . . . 35 with m 3s is 1212..1225 with
m sets of 12. Its digit sum is 3m + 7. Since 1 and 4 are also
good, all numbers 1 more than a multiple are good, and there are
2007

3 = 669 of them. Hence there are altogether 223 + 669 = 992
good numbers not exceeding 2007.

Section II

Answer the following 3 questions, and show your detailed solution in the
space provided after each question. Each question is worth 20 points.
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1. A 4× 4 table has 18 lines, consisting of the 4 rows, the 4 columns,
5 diagonals running from southwest to northeast, and 5 diagonals
running from northwest to southeast. A diagonal may have 2, 3 or
4 squares. Ten counters are to be placed, one in each of ten of the
sixteen cells. Each line which contains an even number of counters
scores a point. What is the largest possible score?

The maximum score is 17, as shown in the placement in the
diagram below. The only line not scoring a point is marked.

We now prove that a perfect score of 18 points leads to a
contradiction. Note that the five diagonals in the same direction
cover all but two opposite corner cells. These two cells must either
be both vacant or both occupied. Note also that we must have a
completely filled row, and a completely filled column. We consider
three cases.

Case 1. All four corner cells are vacant.
We may assume by symmetry that the second row and the second
column are completely filled. Then we must fill the remaining inner
cells of the first row, the fourth row, the first column and the fourth
column. These requires eleven counters.

Case 2. Exactly two opposite corner cells are vacant.
By symmetry, we may assume that one of them is on the first row
and first column, and the other is on the fourth row and fourth
column. Then we must have exactly one more occupied inner cell
on each of the first row, the first column, the fourth row and the
fourth column. This means that all four cells in the interior of the
table are filled. By symmetry, we may assume that the completely
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filled row is the second. It is impossible to score both the diagonals
of length 2 which intersect the second row.

Case 3. All four corner cells are occupied.
We claim that the completely filled row must be either the first
or the fourth. Suppose to the contrary it is the second. Then we
must fill the first column and the fourth column, thus using up all
ten counters. Now there are several diagonals which do not yield
scores. This justifies the claim. By symmetry, we may assume that
the first row and the first column are completely filled. To score all
rows and columns, the remaining two counters must be in the four
interior cells. Again, some of the diagonals will not yield scores.

2. There are ten roads linking all possible pairs of five cities. It is
known that there is at least one crossing of two roads, as illustrated
in the diagram below on the left. There are nine roads linking each
of three cities to each of three towns. It is known that there is also
at least one crossing of two roads, as illustrated in the diagram
below on the right. Of the fifteen roads linking all possible pairs of
six cities, what is the minimum number of crossings of two roads?

Solution. The minimum number of crossings of two roads is three,
as illustrated in the diagram below.

Suppose at most two crossings of two roads are needed. If we close
one road from each crossing, the remaining ones can be drawn
without any crossing. We consider two cases.
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Case 1. The two roads closed meet at a city.
Consider the other five cities linked pairwise by ten roads, none of
which has been closed. It is given that there must be a crossing of
two roads, which is a contradiction.

Case 2. The two roads closed do not meet at a city.
Choose the two cities linked by one of the closed roads, and a
third city not served by the other closed road. Call these three
cities towns. Each is linked to each of the remaining three cities
by a road. It is given that there must be a crossing of two roads,
which is a contradiction.

3. A prime number is called an absolute prime if every permutation
of its digits in base 10 is also a prime number. For example: 2,
3, 5, 7, 11, 13 (31), 17 (71), 37 (73), 79 (97), 113 (131, 311), 199
(919, 991) and 337 (373, 733) are absolute primes. Prove that no
absolute prime contains all of the digits 1, 3, 7 and 9 in base 10.

Solution. Let N be an absolute prime which contains all of the
digits 1, 3, 7 and 9 in base 10. Let L be any number formed from
the remaining digits. Consider the following seven permutations of
N : 10000L+7931, 10000L+1793, 10000L+9137, 10000L+7913,
10000L + 7193, 10000L + 1973 and 10000L + 7139. They have
different remainders when divided by 7. Therefore one of them is
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a multiple of 7, and is not a prime. Hence N is not an absolute
prime.

2 Team Contest
2007/7/23 Changchun, China

1. Use each of the numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9 exactly once to
fill in the nine small circles in the Olympic symbol below, so that
the sum of the numbers inside each large circle is 14.

Solution. The sum of the nine numbers is 1 + 2 + 3 + 4 + 5 +
6+ 7+ 8 + 9 = 45. The total sum of the numbers in the five large
circles is 14 · 5 = 70. The difference 70 − 45 = 25 is the sum of
the four numbers in the middle row, because each appears in two
large circles. The two numbers at one end must be 9 and 5 while
the two numbers at the other end must be 8 and 6. Consider the
two numbers at the end of the middle row. Clearly they cannot
be 5 and 6. If they are 5 and 8, the other two numbers must sum
to 12. With 5 and 8 gone, the only possibility is 9 and 3, but 9
cannot be in the inner part of the middle row. If they are 9 and 8,
the other two numbers must sum to 8. Since neither 5 nor 6 can
appear in the inner part of the middle row, the only possibility is
7 and 1. However, 7 cannot be in the same large circle with either
9 or 8. It follows that the two numbers at the end of the middle
row are 9 and 6, and the other two numbers sum to 10. The only
possibility is 7 and 3, and 7 must be in the same large circle with 6.
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The remaining numbers can now be filled in easily, and the 9-digit
number formed is 861743295.

2. The diagram below shows fourteen pieces of paper stacked on top
of one another. Beginning on the piece marked B, move from piece
to adjacent piece in order to finish at the piece marked F . The
path must alternately climb up to a piece of paper stacked higher
and come down to a piece of paper stacked lower. The same piece
may be visited more than once, and it is not necessary to visit
every piece. List the pieces of paper in the order visited.

Solution. We construct below a diagram which is easier to use.
An arrow from one piece of paper to another represents coming
down from the first to the second. Note that each of M and N is
connected to 7 other pieces, each ofD and J is connected to 4 other
pieces, while each of the others is connected to 3 other pieces. The
path we seek consists of alternately going along with the arrow and
going against it. Of the three arrows at A, the one from B cannot
be used as otherwise we would be stuck at A. Equally useless are
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the arrows from L to M , from M to K, from I to N , from N to
H , from G to F , from E to F , and from C to D. In the diagram
below, they are drawn as single arrows while the useable ones are
drawn as double arrows.

From B, if we climb down to C, then we will go up to M , but we
could have gone up to M directly. Once in M , we have a choice of
C or J , but C leads back to B, and we will get stuck there. From
J , we have to move onto K, L, A, M , D, E, N , G, H , I, J , N
and F . Thus the path is BMJKLAMDENGHIJNF .

3. There are 14 points of intersection in the seven-pointed star in the
diagram (on the next page). Label these points with the numbers
1, 2, 3, . . . , 14 such that the sum of the labels of the four points on
each line is the same. Give one solution.

Solution. Each of the points of intersection lies on exactly two
lines. Hence the common sum is given by 2(1+2+3+ . . .+14)/7 =
30. We claim that the smallest label on the same line with 14 is
1 or 2. Otherwise, the sum of the labels of the two lines is at
least 14 + 14 + 3 + 4 + 5 + 6 + 7 + 8 = 61 > 30 + 30, which is a
contradiction. Similarly, the smallest label on the same line with
13 is 1, 2 or 3. In view of these observations, we put 14 on a line
with 1 and on another line with 2, and 13 on a line with 1 and
on another line with 2 or 3. This leads to the three labeling on
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the top row. The labeling on the bottom row are the complements
of the corresponding ones in the top row, that is, each label k is
replaced by 15− k.

4. Mary found a 3-digit number that, when multiplied by itself,
produced a number which ended in her 3-digit number. What
is the sum of the numbers which have this property?

Solution. Since 1 × 1 = 1, 5 × 5 = 25 and 6 × 6 = 36, the last
digit of the 3-digit number must be either 1, 5 or 6.
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There is no 2-digit number with units digit 1 whose square ends
with that number.
There is only one 2-digit number with units digit 5 whose square
ends with that number and that is 25.
There is only one 2-digit number with units digit 6 whose square
ends with that number and that is 76.
There is only one 3-digit number which ends in 25 whose square
ends with that number and that is 625.

There is only one 3-digit number which ends in 76 whose square
ends with that number and that is 376.

The sum of these two numbers is 625+376=1001.

5. Determine all positive integersm and n such thatm2+1 is a prime
number and 10(m2 + 1) = n2 + 1.
Solution. From the given condition, 9(m2+1) = (n+m)(n−m).
Note that m2 + 1 is a prime number not equal to 3. Hence there
are four cases.

a) n − m = 1, n+m = 9(m2 + 1).
Subtraction yields 9m2 + 8 = 2m, which is impossible.

b) n − m = 3, n+m = 3(m2 + 1).
Subtraction yields 3m2 = 2m, which is impossible.

c) n − m = 9, n+m = m2 + 1.
Subtraction yields 2m = m2 − 8, so that m = 4 and n = 13.
Note that m2 + 1 = 17 is indeed a prime number.

d) n − m = m2 + 1, n+m = 9.
Subtraction yields −2m = m2−8, so that m = 2 and n = 7.
Note that m2 + 1 = 5 is indeed a prime number.

In summary, there are two solutions, (m, n) = (2, 7) or (4, 13).

6. Four teams take part in a week-long tournament in which every
team plays every other team twice, and each team plays one game
per day. The diagram below on the left shows the final scoreboard,
part of which has broken off into four pieces, as shown on the
diagram below on the right. These pieces are printed only on one
side. A black circle indicates a victory and a white circle indicates
a defeat. Which team wins the tournament?
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Solution. When reconstructing the broken scoreboard, there are
two positions where the U-shaped piece can be placed, so as to leave
room for the 3× 2 rectangle. Once it is in place, the positions for
the remaining pieces are determined. They are placed so that there
are two black circles and two white circles in each column. There
are two possibilities, as shown in the diagrams below, but in either
case, the winner of the tournament is Team C.

7. Let A be a 3 by 3 array consisting of the numbers 1, 2, 3, . . . , 9.
Compute the sum of the three numbers on the i-th row of A and
the sum of the three numbers on the j-th column of A. The number
at the intersection of the i-th row and the j-th column of a 3 by 3
array B is equal to the absolute difference of these two sums. For
example, b12 = |(a11 + a12 + a13)− (a12 + a22 + a32)|.
Is it possible to arrange the numbers in A so that the numbers in
B are also 1, 2, 3, . . . , 9?

27



Mathematics Competitions Vol 21 No 1 2008

a11 a12 a13 b11 b12 b13

a21 a22 a23 b21 b22 b23

a31 a32 a33 b31 b32 b33

A B

Solution. Let C be defined just like B, except that we use the
actual difference instead of the absolute difference. Compute the
sum of the nine numbers in C. Each number in A appears twice in
this sum, once with a positive sign and once with a negative sign.
Hence this sum is 0. It follows that among the nine numbers in
C, the number of those which are odd is even. The same is true
of the nine numbers in B, since taking the absolute value does not
affect parity. Thus it is not possible for the nine numbers in B be
1, 2, 3, . . . , 9.

c11 c12 c13

c21 c22 c23

c31 c32 c33

C

8. The diagonals AC and BD of a convex quadrilateral are
perpendicular to each other. Draw a line that passes through point
M , the midpoint of AB and perpendicular to CD, draw another
line through point N , the midpoint of AD and perpendicular to
CB. Prove that the point of intersection of these two lines lies on
the line AC.

Solution. Let M , K and N be the respective midpoints of AB,
AC and AD. Then MN is parallel to BD, MK is parallel to BC
and NK is parallel to CD. Hence AC and the two lines in question
are the altitudes of triangle MNK, and are therefore concurrent.
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9. The positive integers from 1 to n (where n > 1) are arranged in
a line such that the sum of any two adjacent numbers is a square.
What is the minimum value of n?

Solution. The minimum value of n is 15. Since n > 1, we must
include 2, so that n ≥ 7 because 2+7 = 9. For n = 7, we have three
separate lines (1, 3, 6), (2, 7) and (4, 5). Adding 8 only lengthens
the first to (8, 1, 3, 6). Adding 9 now only lengthens the second to
(2, 7, 9). Hence n ≥ 10. Now 8, 9 and 10 all have to be at the
end if we have a single line, because we can only have 8 + 1 = 9,
9 + 7 = 16 and 10 + 6 = 16. The next options are 8 + 17 = 25,
9 + 16 = 25 and 10+ 15 = 25. Hence n ≥ 15. For n = 15, we have
the arrangement 8, 1, 15, 10, 6, 3, 13, 12, 4, 5, 11, 14, 2, 7 and 9.

10. Use one of the five colours (R represents red, Y represents yellow,
B represents blue, G represents green and W represents white) to
paint each square of an 8× 8 chessboard, as shown in the diagram
below. Then paint the rest of the squares so that all the squares of
the same colour are connected to one another edge-to-edge. What
is the largest number of squares of the same colour as compared
to the other colours?

Solution. While it may tempting to colour the entire fourth row
green, this will divide the red squares, the yellow squares and the
blue squares into two disconnected parts. Obviously, the northeast
corner is to be used to allow the green path to get around the yellow
path. Similarly, the southwest corner is to be used to allow the blue
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path to get around the white path, and the southeast corner is to
be used to allow the yellow path to get around the white path. In
fact, we can complete the entire yellow path. Also, the white path
may as well make full use of the seventh row. This brings us to
the configuration as shown in the diagram below on the left. It is
now not hard to complete the entire configuration, which is shown
in the diagram below on the right. The longest path is the green
one, and the number of green squares is 24.
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1 Introduction

An application of similarity is a strong and old tool in mathematics.
A Greek philosopher, Thales of Miletus (circa 580 BCE) was probably
first man who used that knowledge in practical ways. Stories are told
that he discovered how to obtain the height of pyramids (and the other
similar objects) by measuring the shadow of the object at the time when
the body and its shadow were equal in length. He also allegedly showed,
by similarity, how to find the distances of ships at sea. The other great
Greek, Eratosthenes of Alexandria (276–194 BCE), used similarity when
he took the first measurements of the circumference of the globe.

Unfortunately, the teaching of this part of mathematics at Czech high
and secondary schools is a bit neglected these days. It is not sufficient for
secondary school students who take part in mathematical olympiads and
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similar competitions. To get better results in work with such students,
we recommend to acquaint them with the similarity coefficients method:

Suppose figuresMi (i = 1, 2, . . . , n) are given and each of them is similar
to a given figure M. Similarity coefficients ki are

ki =
xi

x
, (1)

where xi ∈ Mi and x ∈ M denote related lengths in the corresponding
similarity. If some relation is true for the similarity coefficients, then
applying some substitutions from (1) to this relation we can get a lot of
useful relations for lengths of figures Mi and corresponding lengths of
M. A similarity coefficient is namely the ratio of two related arbitrary
(non-zero) lengths of given similar forms, and according to a choice of
these lengths, we can get different metric relations in the set of figures
M1, M2, . . . , Mn, M.

2 Triangles and tetrahedra

For better understanding of the similarity coefficient method some
problems are solved in this part.

Problem 1
In a triangle ABC with |AB| = c, |BC| = a and |CA| = b, there are
drawn three lines tangent to the inscribed circle and parallel to the sides,
cutting three small triangles off the corners of the given triangle as shown
in Figure 1. These small triangles have inscribed circles too. Find the
sum of the radii of all four inscribed circles.

(Similar problems: 6th IMO–1964 and 35th CZE–SVK MO–1985/86,
B–I–1.)

Solution. The notation is given in Figure 1. The perimeter of the
triangle A1B1C1 is

p1 = |A1B1|+ |B1T1|+ |T1C1|+ |C1A1|.
According to equality of length of tangent line segments we can rewrite
it in the form

p1 = (|A1B1|+ |B1K|) + (|A1C1|+ |C1M |) = |AK|+ |AM | = 2|AK|.
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Figure 1

In the same way

p2 = |BK|+ |BL| = 2|BL| and p3 = |CL|+ |CM | = 2|CM |.
Now we can express the perimeter p of the given triangle ABC in terms
pi (i = 1, 2, 3). We have

p1 + p2 + p3 = 2|AK|+ 2|BL|+ 2|CM | = p

or, after we divide both sides by p and use (1),

k1 + k2 + k3 = 1. (2)

This is our desired relation. Denoting ki = ri/r where r1, r2, r3 and r
are radii of the inscribed circles we obtain

r1 + r2 + r3 = r. (3)

From two different formulas for the area of the triangle ABC we obtain

r =

�
s(s− a)(s− b)(s− c)

s
=

�
(s− a)(s− b)(s− c)

s
,
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where
s =

a+ b+ c

2
.

Now we can easily express the sum of the radii:

r1 + r2 + r3 + r = 2r = 2

�
(s− a)(s− b)(s− c)

s
.

There are some different ways to derive equality (2). Two of them follow:

1. Consider the symmetry of triangles ABC and A�B�C� (see Figure 2)
with the centre O (incentre of triangle ABC). The segments A3B3 and
A2B1 are symmetric, therefore |A2B1| = |A3B3| = k3 · |AB|.

Figure 2

Hence

k1|AB|+ k3|AB|+ k2|AB| = |AB1|+ |B1A2|+ |A2B| = |AB|,
whence follows (2).
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2. Obviously

k1 =
va1

va
=

va − 2r
va

= 1− 2r
va

= 1− a

s
,

because the formula for the area S of the triangle ABC

S =
1
2
ava = sr

holds. Analogously

k2 = 1− b/s and k3 = 1− c/s.

Adding all three expressions we get k1+ k2+ k3 = 3− (a+ b+ c)/s = 1,
as desired.

Remark. It must be strongly emphasized that the equality (2) gives
much more than (3). If, for example, R1, R2, R3, R and S1, S2, S3, S
are circumradii and areas of triangles A1B1C1, A2B2C2, A3B3C3 and
ABC respectively, we can obtain

R1 +R2 +R3 = R and
�
S1 +

�
S2 +

�
S3 =

√
S etc.

In a similar way we can rewrite (2) as

3
�
k1 · k1 · k1 +

3
�
k2 · k2 · k2 +

3
�
k3 · k3 · k3 = 1,

and we get

3

�
ha1

ha
· hb1

hb
· hc1

hc
+ 3

�
ha2

ha
· hb2

hb
· hc2

hc
+ 3

�
ha3

ha
· hb3

hb
· hc3

hc
= 1,

where ha, hb, hc are altitudes of triangle ABC and hai , hbi , hci are
altitudes of triangle AiBiCi. The last equation can be rewritten in the
form

3
�
ha1 · hb1 · hc1 +

3
�
ha2 · hb2 · hc2 +

3
�
ha3 · hb3 · hc3 =

3
�
ha · hb · hc.
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Problem 2
In a tetrahedron A1A2A3A4 four planes are drawn parallel to the faces
of the tetrahedron touching the inscribed sphere, cutting four small
tetrahedra off the corners of the given tetrahedron. Find the sum of
the inradii of all four small tetrahedra.

Solution. Let O, r and S be the incentre, inradius and surface area of
the given tetrahedron. Denote P1, P2, P3 and P4 as the areas of triangles
A2A3A4, A1A3A4, A1A2A4 and A1A2A3 respectively. Obviously

P1 + P2 + P3 + P4 = S, or
4�

i=1

Pi

S
= 1. (4)

The sum the the volumes of tetrahedra A1A2A3O, A2A3A4O, A3A4A1O
and A4A1A2O is equal to volume V of tetrahedronA1A2A3A4. Therefore

V =
r

3
(P1 + P2 + P3 + P4) =

r

3
S (5)

The small tetrahedron, which has vertex A1 and altitude h1 from this
vertex, is similar to the given tetrahedron. The similarity coefficient
is k1 = h1

v1
, where v1 is the corresponding altitude of the tetrahedron

A1A2A3A4. Analogically, the small tetrahedra with the vertices B, C
and D have similarity coefficients k2, k3 nad k4 respectively, and the
pairs of the corresponding altitudes are denoted by the same way. It
follows from (5) and formula V = 1

3Pivi, that

r

vi
=

1
3Pir
1
3Pivi

=
1
3Pir
1
3Sr

=
Pi

S
,

so analogically, as in problem 1, we have

ki =
hi

vi
= 1− 2r

vi
= 1− 2Pi

S
.

Hence
4�

i=1

ki = 4− 2
4�

i=1

Pi

S
= 4− 2,
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whence
4�

i=1

ki = 2. (6)

Remark. The last method leads to the following n-dimensional
generalization:

n�
i=1

ki = n− 1, (7)

where ki are similarity coefficients of the small n-dimensional simplexes
cut off from an n-dimensional simplex by planes parallel to the faces of
the simplex and tangent to its inscribed sphere. It is also possible to
use the known relation

�n
i=1

1
hi
= 1

r , where hi are the altitudes of the
simplex and r is the inradius.

Problem 3
Let ABC be a triangle with circumradius R and M let be an interior
point of ABC. The lines through M and parallel to the sides AB, BC
and CA determine triangles A1B1C1, A2B2C2 and A3B3C3, similar to
triangle ABC, as shown in Figure 3 (A1 = B2 = C3 = M). Let the
circumradii of these triangles be R1, R2 and R3. Show that

R1 +R2 +R3 = R.

Solution. Obviously (see Figure 3) |CC2| = |C1M | = k1b, where
b = |AC| and k1 is a corresponding similarity coefficient. In the same
way |C2A2| = k2b and |A2A| = k3b. Thus we have

|CC2|+ |C2A2|+ |A2A| = k1b+ k2b+ k3b = |AC| = b,

hence
k1 + k2 + k3 = 1. (8)

Substituting ki = Ri/R, (i = 1, 2, 3) we obtain the desired equality.

Remark. The relation (8) again facilitates finding a lot of other
equalities (not only R1 +R2 +R3 = R). We next show a generalization
of (8) for tetrahedra. The following solution is suitable also for triangles.
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Figure 3

Problem 4
Let ABCD be an arbitrary tetrahedron with an interior point M. The
planes drawn throughM and parallel to the faces ABC, BCD, CAD and
DBA determine tetrahedra I, II, III and IV, which are similar to the
tetrahedron ABCD (see Figure 4). Denote k1, k2, k3 and k4 similarity
coefficients, respectively. Show that

k1 + k2 + k3 + k4 = 1.

Solution. Let the altitude of the given tetrahedron ABCD from vertex
X or the altitudes of tetrahedra I, II, III, IV from vertex X be vX or
h1X , h2X , h3X , h4X , respectively. We can see in Figure 4 that the volume
of tetrahedron BCDM is

VBCDM =
1
3
SBCDh1M = k1 · 13SBCDvA = k1V.

Similarly VACDM = k2V, VABDM = k3V and VABCM = k4V. Thus we
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Figure 4

have

VBCDM + VACDM + VABDM + VABCM = (k1 + k2 + k3 + k4)V = V

and finally
k1 + k2 + k3 + k4 = 1. (9)

Remark. In the same way we can obtain next relation for an n-
dimensional simplex

n�
i=1

ki = 1. (10)

3 A generalization of Pythagoras’ theorem

Pythagoras’ theorem is one of the most well known and oldest
mathematical theorems. Over the course of many years it has been
proved and generalized in many various ways. We are reminded of
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Pappus’ generalization (circa 320 ADE), the law of cosines or different
spatial analogs. In spite of this, the topic of the Pythagoras’ theorem
hasn’t been entirely exhausted yet.

Figure 5

Consider the situation in Figure 5. The altitude CQ divides a right-
angled triangle ABC into triangles ACQ and CBQ, which are similar
to the original triangle ABC. Similarity coefficients k1 and k2 of triangles
ACQ, ABC and CBQ, ABC fulfill k2

1 = S1/S and k2
2 = S2/S, where

S1, S2 and S are the areas of triangles ACQ, CBQ and ABC. From the
equality

S1 + S2 = S

it follows
k2
1 + k2

2 = 1. (11)

This relation presents a first generalization. The substitution k1 = b
c

and k2 = a
c into (11) yields Pythagoras’ theorem

a2 + b2 = c2. (12)

The substitution k1 = cosα and k2 = cosβ gives a basic relation of
trigonometry

cos2 α+ cos2 β = 1

or
cos2 α+ sin2 α = 1. (13)
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Our generalization of Pythagoras’ theorem was known to Euclid, but in
a geometrical form only. In his Elementa ([2], the proposition VI. 31)
he says:

“In right-angled triangles the figure on the side subtending the right
angle is equal to the similar and similarly described figures on the sides
containing the right angle”

Figure 6

This Euclid theorem is clearer than the strict and abstract formula (11)
but the algebraic expression gives wider applications. Considering the
situation in Figure 6, for instance, where KLJ , LJM and JKN are
similar rectangular triangles we can easily find using (11), the next
relation probably unknown to Euclid

x1y1z1
r1

+
x2y2z2
r2

=
xyz

r
.

Now, we shall consider the more general case. Pythagoras’ Theorem (12)
is a special case of the law of cosines

c2 = a2 + b2 − 2ab cosγ,

holding for an arbitrary triangle. Our idea is to find an analog of the
formula (11) in the case an arbitrary triangle.
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α

β

γ

α

βγ

α

β

γ

Figure 7

Let ABC be an arbitrary triangle and let AX , BY and CZ denote the
altitudes. First we shall suppose that triangle ABC is acute-angled as
shown in Figure 7. This is well known, that the triangles AYZ ,XBZ and
XYC are similar to the original triangle ABC. It is seen from the fact
that the quadrilaterals ABXY, BCY Z and CAZX are inscribed into
Thalet circles with diameters AB, BC and CA respectively. Therefore
|∠ABX |+ |∠AY X | = π which implies |∠AY X | = π − β. From here it
follows that |∠CY X | = β. Denote

k1 = |AZ|
|AC| =

|Y Z|
|BC| =

|AY |
|AB| = cosα,

k2 =
|BZ|
|BC| =

|XZ|
|AC| =

|BX|
|AB| = cosβ, (14)

k3 =
|CY |
|BC| =

|XY |
|AC| =

|CX|
|AC| = cos γ.

For the areas S1, S2, S3, S4 and S of the triangles AY Z, XBZ, XY C,
XYZ and ABC the equality

S1 + S2 + S3 + S4 = S (15)

holds. We have

S1 = k2
1S, S2 = k2

2S, S3 = k2
3S. (16)
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Finally, we evalute the area S4 of triangle XY Z. We have

2S4 = |XY | · |XZ| · sin(π − 2α) = k3|AB| · k2|AC| · sin 2α
= (k2k3 cosα) · |AB| · |AC| sinα = 4k1k2k3S.

Hence
S4 = 2k1k2k3S. (17)

By substituting (17) and (16) in the formula (15) the final result is

k2
1 + k2

2 + k2
3 + 2k1k2k3 = 1. (18)

The relation (18) is a desired analog of the equality (11). According to
(18), we get similarly

cos2 α+ cos2 β + cos2 γ + 2 cosα cosβ cos γ = 1, (19)

which is an analog of relation (13).

Now we consider an obtuse-angled triangle. In this case we can suppose
that γ > π/2. From the Figure 8 we can see, that the expression

S1 + S2 + S3 − S4 = S

holds. The formula (19) is true in this case because cosγ < 0. If we

Figure 8

require also the validity of relation (12), we have to consider k3 < 0. It

44



Mathematics Competitions Vol 21 No 1 2008

will be useful to make a small comparison of Figures 7 and 8. We can see
that there is a similarity ε3 : �ABC → �XY C, which is the product of
both transformations, that is, the reflection ϕ3 in the angle bisector of
∠ACB and the homothety ψ3 of center C and ratio h3, where |h3| = k3.
Obviously h3 > 0 iff ∠ACB is an acute angle and h3 < 0 iff ∠ACB is
an obtuse angle.

Analogously for the triangles AY Z and XBZ there exist corresponding
similarities ε1 and ε2, reflections ϕ1 and ϕ2 and finally homotheties ψ1

and ψ2. Thus we can establish a next convention:

The similarity coefficients k1, k2 and k3 are real numbers and ki =
hi (i = 1, 2, 3). In other words, ki > 0, (ki < 0) iff the corresponding
angle is an acute (obtuse) angle, ki = 0 iff the corresponding angle is a
right angle.

Applying this convention we can use relation (18) for an arbitrary
triangle. Notice that in the case of a right-angled triangle we get relation
(11) or an analogical equality.

Remark. The equality (19) is well known in trigonometry. We can
prove it directly in the following way. In the previous notation we have

a = c cosβ + b cos γ, b = a cosγ + c cosα, c = b cosα+ a cosβ,

which is the same as

a = ck2 + bk3, b = ak3 + ck1, c = bk1 + ak2.

Multiplying the last three expressions we get

abc = (ck2 + bk3)(ak3 + ck1)(bk1 + ak2)

= 2abck1k2k3 + abk2
3(bk1 + ak2) + bck2

1(ck2 + bk3) + ack2
2(ak3 + ck1)

= abc(2k1k2k3 + k2
1 + k2

2 + k2
3),

from which follows the relation (19).
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4 The Euclid extremal theorem and its generaliza-
tion

Especially interesting is Prop. VI. 27 of Euclid Elements,
which contains, including proof, the first known in the history
of mathematics maximum problem that the square encloses
the largest area among all rectangles with a prescribed
perimeter.
Dirk J. Struik, History of Mathematics1

It could be an inexact translation or an inaccurate formulation by Struik
in the sentence above from which some people presume two propositions:

1. The Proposition VI. 27 of Euclid’s Elements is the first known in
the history of mathematics maximum problem.

2. The Proposition VI. 27 says: “The square encloses the largest area
among all rectangles with a prescribed perimeter.”

The first statement isn’t quite correct, the second isn’t the statement of
the Proposition VI. 27.

As for the first, it is the isoperimetric problem which is known in
the history of mathematics as an oldest maximum problem, that the
semicircle encloses the largest area among all figures limited by given
line and a curve with prescribed length. It is well known as the problem
of princess Dido from a myth about how Carthago was founded.

As for the second, let us introduce correct text of Prop. VI. 27 in
accordance with Ralph H. Abraham [3]:

Proposition VI. 27
Of all the parallelograms applied to the same straight line and deficient by
parallelogramic figures similar to and similarly situated to that described
on the half of the straight line, that parallelogram is greatest which is
applied to the half of the straight line and is similar to the defect.

The proposition is something of a muddle because of the old way of
description. The following proof gives a sense of the theorem.

1Translation from Czech edition [1] into English.
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Figure 9

Proof. (By Euclid [2], [3])2 Let AB be a straight line and let it
be bisected at K. Let there be applied to the straight line AB
the parallelogram AL falling short by the parallelogramic figure LB
described on the half of AB, that is, KB. (See Figure 9.) I say that,
of all the parallelograms applied to AB falling short by parallelogramic
figures similar and similarly situated to LB, AL is greatest. Let there
be applied to the straight line AV the parallelogram AY falling short
by the parallelogrammic figure Y B similar and similarly situated to LB.
I say that AL is greater than AY.

Since the parallelogram LB is similar to the parallelogram Y B, therefore
they have about the same diameter. Draw their diameter LB and
describe the figure. Then, since parallelogramCY equals Y N, and Y B is
common, therefore the whole KT equals the whole XN. But KT equals
CZ, since AK also equals KB. Therefore CZ also equals XN. Add CY
to each. Therefore the whole AY equals the gnomon V RU,3 so that the
parallelogram LB, that is, AL, is greater than the parallelogram AY.

Therefore: Of all the parallelograms applied to the same straight line
and deficient by parallelogramic figures similar to and similarly situated
to that described on the half of the straight line, that parallelogram is
greatest which is applied to the half of the straight line and is similar to
the defect.

2Distinguish similar denotation of straight lines and parallelograms, please.
A straight line XY usually means a segment XY .

3It means the polygon UY V KBN.
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Probably, the theorem and its proof are not still quite obvious because
of the archaic way of notation. Therefore a modern version of the
Prop. VI. 27 will be introduced below (see Proposition 1), which is
equivalent to the original theorem. We show how the statement in
the beginning of the paper follows from it, give a proof and also a
generalization of the next proposition.

Proposition 1
A parallelogram AKLM , inscribed in the given triangle ABC with
vertices K, L and M laying inside segments AB, BC and CA
respectively, has the greatest area iff its vertex L is the midpoint of the
side BC.

Figure 10

Proof. Let the side BC of the given triangle ABC be bisected at a
vertex L of parallelogram AKLM (see Figure 10). Consider another
parallelogram AXY Z, inscribed in triangle ABC in the same way.
We shall prove, if Y �= L, than the area SAXY Z of parallelogram
AXY Z is less than the area SAKLM of parallelogram AKLM . Draw
parallelograms XBTY and Y TNU as Figure 10 shows. Denote SKBL

the area of triangleKBL and so on. We have SKXY V = SKBL−(SXBY+
SV Y L) = SLBN−(SY BT+SLY U ) = SY TNU < SV TNL = SZV LM . Hence
SAXY Z = SAKLM + SKXY V − SZV LM < SAKLM , which was desired.
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Note if �ABC is an arbitrary triangle, the segments LV and Y V must
not be equal. Therefore parallelogramsAKLM and AXZY must not the
same perimeter and the Proposition 1 is unisoperimetric generally. But
if �ABC has |AB| = |AC|, the perimeters of parallelograms AKLM
and AXZY are the same. Thus we have the next isoperimetric result:

Corollary 1
The rhomb encloses the largest area among all parallelograms ABCD
with a constant measure of the angle DAB and a prescribed perimeter.

Now if ∠BAC is right in addition, we obtain the proposition which D.
J. Struik showed:

Corollary 2
The square encloses the largest area among all rectangles with a
prescribed perimeter.

Apparently, Propositon VI. 27 of Euclid Elementa is unisoperimetric
and it could not be interchanged with Corollary 2. The equivalent
Proposition 1 gives the maximum area of parellelogram AKLM iff L
is in the centre of BC, that is, iff L is the barycentrum of the side BC
of triangle ABC. This evokes the next generalization:

Proposition 2
Let ABCD be a tetrahedron and L a point inside the face BCD. The
other faces of the tetrahedron and the planes parallel with them, which
pass through L, define a parallelepiped M = AEFGJKLM, inscribed in
the tetrahedron ABCD, as in Figure 11.

The volume of the parallelepiped M, is maximal iff L is the barycentrum
of the triangle BCD.

Probably it will be unsuccessful to try to prove the last statement in
a similar way to Proposition 1. Let us show two different proofs, easily
applicable in the case of Proposition 1 too.

Proof. (Similarity coefficients method.) Let the planes JKL and EFL
intersect the edge BD in points P and X, as shown in Figure 11.
The planes through P and X and parallel with the faces ACD and
ABC respectively, cut off the tetrahedrons QBRP and ZXYD in the
corners of the given tetrahedron. The tetrahedra ZXYD, KPLX and
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Figure 11

QBRP are similar to ABCD. Similarity coefficients corresponding
to tetrahedrons ZXYD, KPLX and QBRP denote k1, k2 and k3

respectively. Obviously, (see Figure 11),

k1 + k2 + k3 =
|DX |
|BD| +

|XP |
|BD| +

|PB|
|BD| = 1. (20)

The volume of the parallelepipedM is V = |AE| · |AG| · |AJ | ·sinα ·sin ε,
where α = |∠BAC| and ε denotes the deviation AD from ABC. Next
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we have |AE| = |ZX | = k1 · |AB|, |AG| = |KL| = k2 · |AC| and
|AJ | = |PQ| = k3 · |AD|. Therefore V = 6 V0k1k2k3, where V0 =
1
6 |AB|·|AC|·|AD|·sinα·sin ε is the volume of the parallelepiped ABCD.
Now, using arithmetic mean–geometric mean (AM–GM) inequality and
relation (20) we will obtain

V = 6V0k1k2k3 ≤ 6V0

�
k1 + k2 + k3

3

�3

=
2
9
V0.

Hence we get maximal volume Vmax = 2
9V0 iff k1 = k2 = k3 = 1

3 . In
other words the volume of the parallelepiped M is maximal iff

−→
AL =

1
3
(
−−→
AB +

−→
AC +

−−→
AD), (21)

that is, iff L is situated in the barycentrum of the face BCD.

Another proof. (Method of coordinates) Let �A,�i,�j,�k �, be a linear
system of coordinates, where �i, �j and �k are unit vectors parallel and
correspondingly parallel with the raysAB, AC and AD. LetB = [b, 0, 0],
C = [0, c, 0], D = [0, 0, d] and L = [x, y, z]. Obviously |AB| = b,
|AC| = c and |AD| = d. Since L belongs to the triangle BCD, applying
the equation of plane BCD we get:

x

b
+
y

c
+
y

d
= 1, x > 0, y > 0, y > 0. (22)

Now, the volume of the parallepiped M is

V = 6 · x
b
· y
c
· z
d
· bcd
6

· sinα · sin ε ≤ 6V0

� x
b +

y
c +

z
d

3

�3

=
2
9
V0,

where α, ε and V0 denotes the same as in the first proof. Finally, the
rest of our proof follows the same way.

Remark. The method of coordinates proof leads to the following
generalization.

Let �A,�i1,�i2, . . . ,�in� be a Cartesian system of coordinates in n-
dimensional Euclidean space. The origin A and points Ar =
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[0, 0, . . . , 0, ar, 0, . . . , 0], ar > 0 (r = 1, 2, . . . , n) are vertices of a simplex
A = AA1A2 . . . An which has volume

V0 =
1
n!
a1a2 . . . , an. (23)

One of the faces of simplex A is an (n − 1)-dimensional simplex S =
A1A2 . . . An, with a barycentrum

T =
1
n

n�
r=1

Ar =
�a1

n
,
a2

n
. . .

an

n

�
. (24)

Let L = [x1, x2, . . . xn] be a point inside S. Obviously xi > 0 (i =
1, 2, . . . , n) and L is on the hyperplane which contains S. Thus we have

n�
r=1

xr

ar
= 1. (25)

Hyperplanes through L, which are perpendicular to the coordinate axes
contain the points Lr = [0, 0, . . . , xr, 0, . . . , 0], (r = 1, 2, . . . , n) and define
together the coordinate hyperplanes n-dimensional parallelepiped M.
Applying (23), AM–GM inequality and (25), we get the volume of M:

V = x1x2 . . . xn =
x1

a1
· x2

a2
. . .

xn

an
· V0 · n!

≤
� x1

a1
+ x2

a2
+ . . .+ xn

an

n

�n

· V0 · n! = n!
nn

· V0.

The last relation fulfills equality iff

xr

ar
=
1
n

(r = 1, 2, . . . n).

According to (24) it means L = T , as we desired.

5 Conclusion

Let us consider the last methods. If we directly use synthetic geometry,
our steps are vivid, clear. In Euclid’s method, for instance, we can
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see the proof of Proposition 1 from Figure 10 directly. The idea, in
its visual form, is simpler than a corresponding algebraic entry. It is
not necessary to know how to work with mathematical symbols and
algebraic expressions if you have some geometric perception and you
can take information from a picture, a scheme or your image.

Algebraic methods are opposed. An abstraction is characteristic for
them. The same results you can find here by using an easy survey work
with symbols and algebraic expressions. But you can get much more
results and simultaneously you can solve a bigger range of problems.

The similarity coefficients method is something like a bridge between
both methods. It is built on visual and objective ideas, but uses algebra
to get results which we cannot see immediately. From this viewpoint,
the similarity coefficients method is very useful for younger students of
mathematics.
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1 Selected Problems from the Second Round of
Tournament 29

In the second round of Tournament 29, both Junior and Senior O Level
papers consisted of five problems, while both Junior and Senior A Level
papers were made up of seven problems. Below are selected questions
with solutions from the second round of Tournament 29.

1. Can it happen that the least common multiple of 1, 2, . . . , n is 2008
times the least common multiple of 1, 2, . . . , m for some positive
integers m and n?

Solution. Let the highest power of 2 less than or equal to m be
2r. Since 2008 = 23 · 251, the highest power of 2 less than or equal
to n must be 2r+3. It follows that n > 4m. Let the highest power
of 3 less than or equal to m be 3s. Then the highest power of 3 less
than or equal to n must also be 3s since 3 does not divide 2008.
However, n > 4m ≥ 4 · 3s > 3s+1, which is a contradiction. Hence
no such positive integers m and n exist.
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2. There are ten congruent segments on a plane. Each point of
intersection divides every segment passing through it in the ratio
3:4. Find the maximum number of points of intersection.

Solution. On each segment, there are exactly two points which
divide it in the ratio 3:4. Hence the total count segment by segment
is at most 20. However, it takes two segments to produce a point of
intersection. Hence there are at most 10 such points. The diagram
below shows how this can be attained, so that 10 is indeed the
maximum.

3. In triangle ABC, ∠A = 90◦. M is the midpoint of BC and H is
the foot of the altitude from A to BC. The line passing through M
and perpendicular to AC meets the circumcircle of triangle AMC
again at P . If BP intersects AH at K, prove that AK = KH .

Solution.

P

C

A

D M

H

B
K

Since both AB and MP are perpendicular to AC and BM = MC,
MP intersects AC at its midpoint D. It follows that MP is
a diameter of the circumcircle, so that MC is perpendicular to
PC. It follows that triangles MCD and MPC are similar, so
that MD

MC = MC
MP . Hence MD

MB = MB
MP . Since ∠DMB = ∠BMP ,

triangles DMB and BMP are also similar. It follows that
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∠CBD = ∠BPM = ∠ABK. Now triangles BAH and BCA
are also similar. Since CD = DA, we have AK = KH .

4. No matter how two copies of a convex polygon are placed inside a
square, they always have a common point. Prove that no matter
how three copies of the same polygon are placed inside this square,
they also have a common point.

Solution. Let a copy F of the convex polygon be placed anywhere
inside the square. Consider the copy F � obtained from F by a half-
turn about the centre O of the square. By hypothesis, F and F �

must have a point in common. Let it be P . Then the point P �

obtained from P by a half-turn about O is also in the intersection
of F and F �. Since F is convex, O is also in F . It follows that a
copy of the convex polygon placed anywhere inside the square must
cover O. It follows that if three copies are placed in the square,
they will have O in common.

5. We may permute the rows and the columns of the table below.
How may different tables can we generate?

1 2 3 4 5 6 7
7 1 2 3 4 5 6
6 7 1 2 3 4 5
5 6 7 1 2 3 4
4 5 6 7 1 2 3
3 4 5 6 7 1 2
2 3 4 5 6 7 1

Solution. The columns may be permuted in 7! ways so that the
first row is different. The remaining rows may be permuted in 6!
ways so that the first column is different. Once the first row and
the first column have been fixed, the remaining entries in the table
are also fixed. Hence the total number of different tables we can
generate is 7! · 6!.

6. Given are finitely many points in the plane, no three on a line.
They are painted in four colours, with at least one point of each
colour. Prove that there exist three triangles, distinct but not
necessarily disjoint, such that the three vertices of each triangle

56



Mathematics Competitions Vol 21 No 1 2008

have different colours, and none of them contains a coloured point
in its interior.

Solution. Consider all sets of four points of different colours.
Since the number of points is finite, we can choose the set
whose convex hull has the smallest area. If the convex hull is a
quadrilateral, then there are no coloured points in its interior, as
otherwise we have a set whose convex hull has smaller area. The
four vertices of the quadrilateral determine four triangles each with
vertices of different colours, and any three of these four triangles
will satisfy the requirement. Suppose the convex hull is a triangle
ABC, say with A red, B yellow and C blue. Then only points of
the fourth colour, say green, can be inside ABC, and there is at
least one such point D. If there are no green points other than
D, then triangles ACD, BAD and CBD satisfy the requirement.
Suppose BAD contains other green points. Choose among them
a point E such that triangle BAE has the smallest area. Then it
cannot contain any green points in its interior, and we can replace
BAD by BAE. A similar remedy can be applied if either ACD or
CBD contains green points in its interior. Hence we will get three
triangles which satisfy the requirement.

2 World Wide Web

Information on the Tournament, how to enter it, and its rules are on
the World Wide Web. Information on the Tournament can be obtained
from the Australian Mathematics Trust web site at

http://www.amt.edu.au

3 Books on Tournament Problems

There are four books on problems of the Tournament available.
Information on how to order these books may be found in the Trust’s
advertisement elsewhere in this journal, or directly via the Trust’s web
page.
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Please note the Tournament’s postal address in Moscow:

NN Konstantinov
PO Box 68
Moscow 121108
RUSSIA

Andrei Storozhev

Australian Mathematics Trust

University of Canberra ACT 2601

AUSTRALIA.

email: andreis@amt.edu.au

58







Subscriptions 
Journal of the World Federation  

of National Mathematics Competitions

2 Issues Annually

Current subscribers will receive a subscription notice  
after the publication of the second issue each year. 

For new subscribers, information can be obtained from: 

Australian Mathematics Trust

University of Canberra ACT 2601

AUSTRALIA

Tel: +61 2 6201 5137

Fax:+61 2 6201 5052

Email: publications@amt.edu.au

or from our web site:
www.amt.edu.au



Australian Mathematics Competition 
(AMC) Solutions and Statistics
Edited by DG Pederson

This book provides, each year, a record of the 
AMC questions and solutions, and details 
of medallists and prize winners. It also 
provides a unique source of information for 
teachers and students alike, with items such 
as levels of Australian response rates and 
analyses including discriminatory powers 
and difficulty factors.

Australian Mathematics Competition Book 1 
(1978-1984)

Australian Mathematics Competition Book 2 
(1985-1991)

Australian Mathematics Competition Book 3 
(1992-1998)

Book 3 also available on CD (for PCs only).

Australian Mathematics Competition Book 4 
(1999-2005)

Excellent training and learning resources, 
each of these extremely popular and 
useful books contains over 750 past AMC 
questions, answers and full solutions. The 
questions are grouped into topics and 
ranked in order of difficulty. 

Problem Solving Via the AMC
Edited by Warren Atkins

This 210 page book consists of a 
development of techniques for solving 
approximately 150 problems that have 

been set in the Australian Mathematics 
Competition. These problems have been 
selected from topics such as Geometry, 
Motion, Diophantine Equations and 
Counting Techniques.

Methods of Problem Solving, Book 1
Edited by JB Tabov, PJ Taylor

This introduces the student aspiring to 
Olympiad competition to particular 
mathematical problem solving techniques. 
The book contains formal treatments of 
methods which may be familiar or introduce 
the student to new, sometimes powerful 
techniques.

Methods of Problem Solving, Book 2 
JB Tabov & PJ Taylor
After the success of Book 1, the authors 
have written Book 2 with the same format 
but five new topics. These are the Pigeon-
Hole Principle, Discrete Optimisation, 
Homothety, the AM-GM Inequality and the 
Extremal Element Principle.

Mathematical Toolchest
Edited by AW Plank & N Williams

This 120 page book is intended for talented 
or interested secondary school students, 
who are keen to develop their mathematical 
knowledge and to acquire new skills. Most 
of the topics are enrichment material 
outside the normal school syllabus, and are 
accessible to enthusiastic year 10 students.

These books are a valuable resource for 
the school library shelf, for students 
wanting to improve their understanding 
and competence in mathematics, and for 
the teacher who is looking for relevant, 
interesting and challenging questions and 
enrichment material.

To attain an appropriate level of achievement 
in mathematics, students require talent in 
combination with commitment and self-
discipline. The following books have been 
published by the AMT to provide a guide 
for mathematically dedicated students and 
teachers.

Useful Problem Solving Books from AMT Publications



International Mathematics — 
Tournament of Towns (1980-1984) 

International Mathematics — 
Tournament of Towns (1984-1989) 

International Mathematics — 
Tournament of Towns (1989-1993) 

International Mathematics — 
Tournament of Towns (1993-1997) 

International Mathematics — 
Tournament of Towns (1997-2002)
Edited by PJ Taylor 

The International Mathematics Tournament 
of Towns is a problem solving competition 
in which teams from different cities are 
handicapped according to the population 
of the city. Ranking only behind the 
International Mathematical Olympiad, this 
competition had its origins in Eastern 
Europe (as did the Olympiad) but is now 
open to cities throughout the world. Each 
book contains problems and solutions from 
past papers.

Challenge! 1991 – 1998 Book 1 
Edited by JB Henry, J Dowsey, A Edwards,  
L Mottershead, A Nakos, G Vardaro & PJ 
Taylor  

This book is a major reprint of the original 
Challenge! (1991-1995) published by the 
Trust in 1997. It contains the problems and 
full solutions to all Junior and Intermediate 
problems set in the Mathematics Challenge 
for Young Australians, exactly as they 
were proposed at the time. It is expanded 
to cover the years up to 1998, has more 
advanced typography and makes use of 
colour. It is highly recommended as a 
resource book for classes from Years 7 
to 10 and also for students who wish to 
develop their problem solving skills. Most 
of the problems are graded within to allow 
students to access an easier idea before 
developing through a few levels.

 

USSR Mathematical Olympiads  
1989 – 1992  
Edited by AM Slinko

Arkadii Slinko, now at the University of 
Auckland, was one of the leading figures 
of the USSR Mathematical Olympiad 
Committee during the last years before 
democratisation. This book brings together 
the problems and solutions of the last 
four years of the All-Union Mathematics 
Olympiads. Not only are the problems and 
solutions highly expository but the book 
is worth reading alone for the fascinating 
history of mathematics competitions to be 
found in the introduction. 

Australian Mathematical Olympiads  
1979 – 1995
H Lausch & PJ Taylor

This book is a complete collection of 
all Australian Mathematical Olympiad 
papers since the first competition in 1979. 
Solutions to all problems are included and 
in a number of cases alternative solutions 
are offered.

Chinese Mathematics Competitions and 
Olympiads 1981-1993 and 1993-2001
A Liu

These books contain the papers and 
solutions of two contests, the Chinese 
National High School Competition and the 
Chinese Mathematical Olympiad. China has 
an outstanding record in the IMO and these 
books contain the problems that were used 
in identifying the team candidates and 
selecting the Chinese teams. The problems 
are meticulously constructed, many with 
distinctive flavour. They come in all levels 
of difficulty, from the relatively basic to the 
most challenging.



Asian Pacific Mathematics Olympiads  
1989-2000
H Lausch & C Bosch-Giral 

With innovative regulations and procedures, 
the APMO has become a model for regional 
competitions around the world where costs 
and logistics are serious considerations. This 
159 page book reports the first twelve years 
of this competition, including sections on 
its early history, problems, solutions and 
statistics.

Polish and Austrian Mathematical 
Olympiads 1981-1995
ME Kuczma & E Windischbacher

Poland and Austria hold some of the 
strongest traditions of Mathematical 
Olympiads in Europe even holding a 
joint Olympiad of high quality. This book 
contains some of the best problems from 
the national Olympiads. All problems 
have two or more independent solutions, 
indicating their richness as mathematical 
problems.

Seeking Solutions
JC Burns

Professor John Burns, formerly Professor of 
Mathematics at the Royal Military College, 
Duntroon and Foundation Member of  
the Australian Mathematical Olympiad 
Committee, solves the problems of the 1988, 
1989 and 1990 International Mathematical 
Olympiads. Unlike other books in which 
only complete solutions are given, John 
Burns describes the complete thought 
processes he went through when solving 
the problems from scratch. Written in  
an inimitable and sensitive style, this book 
is a must for a student planning on 
developing the ability to solve advanced 
mathematics problems.

101 Problems in Algebra 
from the Training of the USA IMO Team
Edited by T Andreescu & Z Feng

This book contains one hundred and one 
highly rated problems used in training and 
testing the USA International Mathematical 
Olympiad team. These problems are carefully 
graded, ranging from quite accessible 
towards quite challenging. The problems 
have been well developed and are highly 
recommended to any student aspiring to 
participate at National or International 
Mathematical Olympiads.

Hungary Israel Mathematics Competition
S Gueron

This 181 page book summarizes the first 
12 years of the competition (1990 to 
2001) and includes the problems and 
complete solutions. The book is directed 
at mathematics lovers, problem solving 
enthusiasts and students who wish to 
improve their competition skills. No special 
or advanced knowledge is required beyond 
that of the typical IMO contestant and the 
book includes a glossary explaining the 
terms and theorems which are not standard 
that have been used in the book.

Bulgarian Mathematics Competition 
1992-2001 
BJ Lazarov, JB Tabov, PJ Taylor, AM 
Storozhev

The Bulgarian Mathematics Competition 
has become one of the most difficult and 
interesting competitions in the world. It is 
unique in structure, combining mathematics 
and informatics problems in a multi-choice 
format. This book covers the first ten years 
of the competition complete with answers 
and solutions. Students of average ability 
and with an interest in the subject should 
be able to access this book and find a 
challenge.



Mathematical Contests – Australian Scene  
Edited by AM Storozhev, K McAvaney & A 
Di Pasquale

These books provide an annual record 
of the Australian Mathematical Olympiad 
Committee’s identification, testing and 
selection procedures for the Australian 
team at each International Mathematical 
Olympiad. The books consist of the 
questions, solutions, results and statistics 
for: Australian Intermediate Mathematics 
Olympiad (formerly AMOC Intermediate 
Olympiad), AMOC Senior Mathematics 
Contest, Australian Mathematics Olympiad, 
Asian-Pacific Mathematics Olympiad, 
International Mathematical Olympiad, and 
Maths Challenge Stage of the Mathematical 
Challenge for Young Australians.

WFNMC — Mathematics Competitions
Edited by Jaroslav Švrcek

This is the journal of the World Federation 
of National Mathematics Competitions 
(WFNMC). With two issues each of 
approximately 80-100 pages per year, 
it consists of articles on all kinds of 
mathematics competitions from around  
the world.

Parabola incorporating Function

This Journal is published in association 
with the School of Mathematics, University 
of New South Wales. It includes articles 
on applied mathematics, mathematical 
modelling, statistics, history and pure 
mathematics that can contribute to the 
teaching and learning of mathematics at 
the senior secondary school level. The 
Journal’s readership consists of mathematics 
students, teachers and researchers with 
interests in promoting excellence in senior 
secondary school mathematics education.

EnrichmEnt StudEnt notES

The Enrichment Stage of the Mathematics 
Challenge for Young Australians (sponsored 
by the Dept of Education, Science and 
Training) contains formal course work as 
part of a structured, in-school program. 
The Student Notes are supplied to students 
enrolled in the program along with other 
materials provided to their teacher. We are 
making these Notes available as a text book 
to interested parties for whom the program 
is not available.

Newton Enrichment Student Notes
JB Henry
Recommended for mathematics students of 
about Year 5 and 6 as extension material. 
Topics include polyominoes, arithmetricks, 
polyhedra, patterns and divisibility.

Dirichlet Enrichment Student Notes
JB Henry
This series has chapters on some problem 
solving techniques, tessellations, base 
five arithmetic, pattern seeking, rates and 
number theory. It is designed for students 
in Years 6 or 7.

Euler Enrichment Student Notes
MW Evans and JB Henry
Recommended for mathematics students of 
about Year 7 as extension material. Topics 
include elementary number theory and 
geometry, counting, pigeonhole principle.

Gauss Enrichment Student Notes
MW Evans, JB Henry and AM Storozhev
Recommended for mathematics students of 
about Year 8 as extension material. Topics 
include Pythagoras theorem, Diaphantine 
equations, counting, congruences.

Noether Enrichment Student Notes
AM Storozhev
Recommended for mathematics students 
of about Year 9 as extension material. 
Topics include number theory, sequences, 
inequalities, circle geometry.
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Pólya Enrichment Student Notes
G Ball, K Hamann and AM Storozhev
Recommended for mathematics students of 
about Year 10 as extension material. Topics 
include polynomials, algebra, inequalities 
and geometry.

t-ShirtS

T-shirts celebrating the following 
mathematicians are made of 100% cotton 
and are designed and printed in Australia. 
They come in white, and sizes Medium 
(Polya only) and XL.

Carl Friedrich Gauss T–shirt

The Carl Friedrich Gauss t-shirt celebrates 
Gauss’ discovery of the construction of 
a 17-gon by straight edge and compass, 
depicted by a brightly coloured cartoon. 

Emmy Noether T–shirt

The Emmy Noether t-shirt shows a 
schematic representation of her work on 
algebraic structures in the form of a brightly 
coloured cartoon. 

George Pólya T–shirt

George Pólya was one of the most significant 
mathematicians  of the 20th century, both as 
a researcher, where he made many significant 
discoveries, and as a teacher and inspiration  
to others. This t-shirt features one of 
Pólya’s most famous theorems, the 
Necklace Theorem, which he discovered 
while working on mathematical aspects of 
chemical structure. 

Peter Gustav Lejeune Dirichlet T–shirt

Dirichlet formulated the Pigeonhole 
Principle, often known as Dirichlet’s 
Principle, which states: “If there are p 
pigeons placed in h holes and p>h then 
there must be at least one pigeonhole 
containing at least 2 pigeons.”  The t-shirt 
has a bright cartoon representation of this 
principle. 

Alan Mathison Turing T-shirt

The Alan Mathison Turing t-shirt depicts 
a colourful design representing Turing’s 
computing machines which were the first 
computers.  

ordEring

All the above publications are available 
from AMT Publishing and can be purchased 
on-line at:

www.amtt.edu.au

or contact the following:

AMT Publishing
Australian Mathematics Trust
University of Canberra  ACT 2601
Australia

Tel: +61 2 6201 5137

Fax: +61 2 6201 5052

Email: mail@amt.edu.au



The Australian Mathematics Trust
The Trust, of which the University of Canberra is Trustee, is a non-profit 
organisation whose mission is to enable students to achieve their full intellectual 
potential in mathematics. Its strengths are based upon:

•	 a	network	of	dedicated	mathematicians	and	teachers	who	work	in	a	voluntary	
capacity supporting the activities of the Trust;

•	 the	quality,	freshness	and	variety	of	its	questions	in	the	Australian	
Mathematics Competition, the Mathematics Challenge for Young Australians, 
and other Trust contests;

•	 the	production	of	valued,	accessible	mathematics	materials;	
•	 dedication	to	the	concept	of	solidarity	in	education;
•	 credibility	and	acceptance	by	educationalists	and	the	community	in	general	

whether locally, nationally or internationally; and
•	 a	close	association	with	the	Australian	Academy	of	Science	and	professional	

bodies.




