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The aims of the Federation are:–
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mathematics education through the use of school math-
ematics competitions;
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interested in mathematics contests can exchange and
develop ideas for use in their countries;

3. to provide opportunities for the exchanging of information
for mathematics education through published material,
notably through the Journal of the Federation;

4. to recognize through the WFNMC Awards system persons
who have made notable contributions to mathematics
education through mathematical challenge around the
world;

5. to organize assistance provided by countries with developed
systems for competitions for countries attempting to
develop competitions;

6. to promote mathematics and to encourage young mathe-
maticians.
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From the Editor

Welcome to Mathematics Competitions Vol 15, No 2.

The WFNMC held a highly successful Congress-4 in Melbourne from 4 to
11 August. It was again a pleasure to meet up with friends and colleagues
from around the world. The Executive also agreed to strengthen the
editorial structure of the journal Mathematics Competitions with the
appointment of two Associate Editors, Gareth Griffith from Canada and
Jaroslav Svrcek from the Czech Republic.

Again, I would like to thank the Australian Mathematics Trust for its
continued support, without which the journal could not be published,
and in particular Heather Sommariva, Sally Bakker and Richard Bollard
for their assistance in the preparation of the journal.

Submission of articles:

The journal Mathematics Competitions is interested in receiving articles
dealing with mathematics competitions, not only at national and
international level, but also at regional and primary school level. There
are many readers in different countries interested in these different levels
of competitions.

• The journal traditionally contains many different kinds of articles,
including reports, analyses of competition problems and the
presentation of interesting mathematics arising from competition
problems. Potential authors are encouraged to submit articles of
all kinds.

• To maintain and improve the quality of the journal and its
usefulness to those involved in mathematics competitions, all
articles are subject to review and comment by one or more
competent referees. The precise criteria used will depend on
the type of article, but can be summarised by saying that an
article accepted must be correct and appropriate, the content
accurate and interesting, and, where the focus is mathematical, the
mathematics fresh and well presented. This editorial and refereeing
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process is designed to help improve those articles which deserve to
be published.

At the outset, the most important thing is that if you have anything
to contribute on any aspect of mathematics competitions at any level,
local, regional or national, we would welcome your contribution.

Articles should be submitted in English, with a black and white
photograph and a short profile of the author. Alternatively, the article
can be submitted on an IBM PC compatible disk or a Macintosh disk.
The preferred format is LATEX or TEX, but any text file will be helpful.

Articles, and correspondence, can also be forwarded to the editor by mail
to

The Editor, Mathematics Competitions
Australian Mathematics Trust
University of Canberra ACT 2601
AUSTRALIA

or by email to the address <warrena@amt.canberra.edu.au> or by fax
to the Australian Mathematics Trust office, + 61 2 6201 5052,
(02 6201 5052 within Australia).

Warren Atkins,
December 2002

* * *
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From the President

Since last time our major conference in Melbourne has come and gone.
As an Australian host we were very excited about the prospects of having
many of you in Australia for the very first time. For many others who
had been to Australia before it may have been an opportunity to visit
the city of Melbourne for the first time.

In respect to the Conference itself, the highlight during the week was
the presence of John Conway, von Neumann Professor at Princeton
University, who gave a memorable plenary lecture and contributed
throughout the week to the various sessions.

In respect to WFNMC business it was a real landmark for us to be able
to formally adopt a policy statement in which for the first time we define
the scope of what we mean by the word ‘competition’ and relate it to
the enhancement of the mathematics teaching and learning processes.

The Conference also gave us the chance to develop our task force’s work
on the involvement of teachers. The sessions led by Tony Gardiner made
much progress in this area.

With respect to our relations with ICMI, I believe that our relations
with the Executive are excellent and I am very happy with the positive
lines of communication in both directions.

However, I am very disappointed with what appears to be a downgraded
role for competitions discussions at the coming ICME-10 Conference
in Copenhagen. In the most recent ICMEs, people involved with
competitions have been very enthusiastic supporters. Competitions had
been the theme of Topic areas which had been very well attended.
The program for the last ICME in Tokyo still shows on the WFNMC
web site that this had a very packed program with only a little time
available to each speaker. It is very disappointing that at ICME-10,
competitions have been relegated to a discussion group in which no oral
communications can be made.

Competitions have a broadening role in the mathematics teaching and
learning process and it was quite obvious after the considerable interest
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shown at the recent Melbourne conference that more, rather than less,
time could have been well occupied in Copenhagen. I can assure you that
Tony Gardiner and I had lobbied very hard for increased availability of
time.

Given the situation, and given that I am sure many of us will still be
attending ICME-10, we need to resolve how we can find time ourselves.
I would very much appreciate your suggestions.

One solution may be for us to organize an extra day or so to convene our
own mini-conference in Copenhagen immediately after ICME-10. This
might in fact be a good permanent solution as ICMEs do have a very
crowded agenda with many attendees and we cannot rely on the time
we need being available.

Peter Taylor
December 2002

* * *
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The Erdös Awards

Call for Nominations

The Awards Committee of the WFNMC calls for nomi-
nations for the Erdös Awards. As described in the formal
nomination procedures (see page 84 this issue), nomina-
tions should be sent to the chair of the committee to
the address below by 1 May 2003 for consideration for
2004, and must include a description of the nominee’s
achievements together with the names and addresses of
(preferably) four persons who can act as referees.

Committee Chair:

R G Dunkley
Centre for Education in Mathematics and Computing
Faculty of Mathematics
University of Waterloo
Waterloo, ON
CANADA N2L G1
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The Erdös Awards

Bogoljub Marinkovich, Yugoslavia

Bogoljub Marinkovich has had a lengthy career in mathematics
education, has served as teacher, educator of teachers, and curriculum
developer. He is currently Counsellor for Mathematics at the Ministry
of Education, where he is responsible for the advancement of teaching
mathematics in the schools. His work has resulted in significant reforms
in the study of mathematics. He initiated, and has for twenty-five years,
been Chair of a continuing seminar for advanced training of teachers.

Beginning in 1967, he became involved in competitions in primary
and secondary schools. Since then, he has maintained a continued
involvement in competitions at all levels, including the International
Mathematical Olympiad.

He was founder of Archimedes, the National Mathematics Competition
in Serbia, a comprehensive program aimed at identifying bright young
students and then training them for potential IMO competitions and for
university studies.
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As an extension of the activity, in 1998 the Arhimedes organization
brought the Tournament of Towns to Serbia.

He has lectured internationally on the training of teachers, is the editor
of two popular mathematical journals, and has authored more than six
hundred publications.

* * *

Harold Braun Reiter, USA

Harold Reiter (centre) receives his Erdös Award from WFNMC President
Peter Taylor (left) and WFNMC Awards Committee Chairman, Ron
Dunkley (right). The presentation took place on Saturday 10 August
2002, at the Ibis Hotel, Melbourne, as part of WFNMC’s 4th conference.

For thirty years, Harold Reiter has provided competitive academic
opportunities for students. Through workshops, conferences and articles,
he has spread the good word about mathematics competitions. He
has given generously of his time and energy in creating and improving
competitions at the local, national and international levels.

11
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A listing of his activities includes the following. At one time or another
he has been:

• founder of the Charlotte Mathematics Club

• founder of the Mecklenburg Mathematics Club

• founder of the University of North Carolina at Charlotte Mathe-
matics Contest

• Chair of the North Carolina High School Mathematics Contest

These are local activities. At the national level he has been:

• Chair of the MAA Committee on Local and Regional Competitions

• member of the Board of Advisors for the COMAP Math Modeling
Contest

• member of the American Junior High School Mathematics Exam,
the American Invitational Mathematics Exam, and the United
States Mathematical Olympiad.

• Vice President of the International Tournament of Towns

• member of the Committee for the Canadian Mathematics Compe-
tition

• question writer of the Mathematics Foundation Middle School
competition

In addition to outstanding committee administrative skills, it is
estimated that he has authored some 2,000 problems for competitions at
all levels from early junior level to Olympiad level.

For many years he has offered workshops locally, nationally and
internationally.

In addition to this devotion to mathematics competitions, he is also
an outstanding educator. In recent years, he has been awarded
distinguished teaching awards by his university, by the North Carolina
Council of Teachers and by the Southeastern Section Mathematics
Association.
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Wen-Hsien Sun, Taiwan

Executive Director, Chiu Chang Mathematics Foundation, Taipei

Wen-Hsien Sun (centre) receives his Erdös Award from WFNMC Pres-
ident Peter Taylor (left) and WFNMC Awards Committee Chairman,
Ron Dunkley (right). The presentation took place on Saturday 10 Au-
gust 2002, at the Ibis Hotel, Melbourne, as part of WFNMC’s 4th con-
ference.

Wen-Hsien Sun completed an undergraduate degree in mathematics
education, but did not become a teacher because of unhappiness with
an examination-driven culture. Instead, he became a businessman
supplying stationery to the schools. In 1978, he created Chiu Chang
Mathematics Publishing Company, aimed at making good enrichment
materials available to schools. On many occasions, he subsidized
publications personally in order to increase their availability.

In 1988, he was instrumental in introducing the IMO to Taiwan and since
that time has played a significant role in the Taiwan IMO experience,
organizing, training and leading their team, often at his own expense.

In other areas, he has created a bookstore in Beijing, through which
Chinese mathematicians have had access to Western publications, has
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introduced the Tournament of Towns to Taiwan, and has encouraged
the enrolment of Taiwan schools in the Australian Mathematics
Competition.

He has been a major reason for the enrolment of Taiwan students
in elementary and intermediate competitions and has ensured that
enrichment materials are available for study. As an offshoot of this
activity, selected students are able to attend the Chiu Chang-University
of Alberta Summer Camp, learning Mathematics, English and Canadian
Culture.

In 2000, he founded the Chiu Chang Mathematics Foundation, which
sponsors the exchange program, and also supports local activities and
puzzle competitions.

* * *
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Numerical Polyhedron Problems1

Robert Geretschläger

Robert Geretschläger gained his Dr
Phil in Functional Analysis from Karl
Franzens University. He has taught
at various schools in Austria. He has
been actively involved with the Aus-
trian Mathematical Olympiad since
1985 and with the national team since
1990. He is head of the Austrian
committees for the Kangaroo competi-
tion, the Tournament of Towns and the
Mediterranean Mathematics Competi-
tion.

1 Introduction

Problems in solid geometry have become more and more rare in
competitions over the years, reflecting developments in schools in most
countries. Occasionally, we do still see problems in solid geometry, that
tend to be either metric in nature (requiring the calculation of some
volume, angle or distance) or combinatorial (counting vertices or faces,
or involving coloring, for instance).

In this paper I would like to present some slightly different problems
involving “numerical” properties of certain polyhedra, i.e. problems
asking about relationships between the numbers of vertices, edges and
faces of specific polyhedra. Some of these questions will ask for the
smallest or largest such numbers possible under certain conditions, and
many will ask about the existence of polyhedra with certain properties.
For simplicity’s sake, we will assume that all problems are restricted to

1This paper was a keynote address at the WFNMC Congress 4 in Melbourne in
August 2002.
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convex polyhedra, although most can be stated just as easily with more
general underlying conditions. The problems range in difficulty from
very elementary (and accessible to very young students) to research level.
While a few of these problems have actually been posed in competitions
or journals, most are not too well known.

This paper was in fact inspired by the fact that a few interesting problems
of this type had caught my eye in the last few years. Specifically, the
following problems were either recent competition problems somewhere,
or were posed in the problems section of an international mathematical
journal.

Problem 1

One face of a polyhedron is a pentagon. What is the smallest number of
faces the polyhedron can have?

A) 5 B) 6 C) 7 D) 8 E) 10
(Kangaroo competition 2002, Junior and Étudiant)

Problem 2

A prism has 2002 vertices. How many edges does the prism have?
A) 3003 B) 1001 C) 2002 D) 4002 E) 2001

(Kangaroo competition 2002, Étudiant)

Problem 3

Suppose we want to construct a solid polyhedron using just n pentagons
and some unknown number of hexagons (none of which need be regular),
so that exactly three faces meet at every vertex on the polyhedron. For
what values of n is this feasible?
(Crux Mathematicorum with Mathematical Mayhem, April 2001, Prob-
lem H287, [1])

Problem 4

Find all bounded convex polyhedra such that no three faces have the
same number of edges.
(The American Mathematical Monthly, Feb. 2001, Problem 10856,
proposed by Andrei Jorza, [4])

16
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These four problems illustrate the levels of difficulty quite well, since the
first two are quite elementary, the third easy enough, but requiring some
previous knowledge, and the fourth quite difficult. Their solutions will
be given in the appropriate sections to come.

2 Elementary Problems

Let us consider the first two of these problems. They represent what is
probably the easiest type of polyhedra problem, since they only require
knowledge of those types of polyhedra that tend to be best known to
students, namely pyramids and prisms.

An n-sided pyramid is, of course, a polyhedron with an n-gon as one
face (the base) and n triangles as faces that all have a common vertex
(the apex, Figure 1a). An n-sided pyramid has n+1 faces, n+1 vertices
and 2n edges.

Similarly, an n-sided prism is a polyhedron with two congruent n-gons as
faces (the lower and upper bases) and n parallelograms as faces joining
these two (Figure 1b). An n-sided prism has n+2 faces, 2n vertices and
3n edges.

A further useful type of polyhedron in this context is the slightly less
well known anti-prism. An n-sided anti-prism is a polyhedron with two
congruent n-gons as faces (the lower and upper bases) and 2n triangles as
faces, each of which has two corners in common with one of the bases and
the third in common with the other. (Figure 1c). An n-sided anti-prism
has 2n + 2 faces, 2n vertices and 4n edges.

We also have some additional information at our disposal concerning the
faces of these special types of polyhedra. An n-sided pyramid (n > 3)
has one n-sided face and n triangular faces. An n-sided prism (n ≥ 3,
n �= 4) has two n-sided faces and n 4-sided faces. Finally, an n-sided
anti-prism (n > 3) has two n-sided faces and 2n triangular faces.

17
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a) b) c)

Figure 1

In the special case n = 3, the pyramid is a tetrahedron (4 triangular
faces) and the anti-prism is an octahedron (8 triangular faces). For
n = 4 the prism is a parallelepiped (6 four-sided faces).

Armed with this elementary information, we can now take a closer look
at the solutions of the first two problems.

Solution to Problem 1: An edge of a polyhedron is always a common
side of two of its faces. If one face of a polyhedron is a pentagon, it must
have at least one more face sharing each of the five sides of the pentagon.
No two of these can be the same, since that would mean that the plane
of such a face would pass through at least three of the corners of the
pentagon, and must therefore be identical to the plane of the pentagon,
contradicting the fact that two faces of a convex polyhedron cannot lie in
the same plane. The polyhedron in question must therefore have at least
6 faces. Since we know that a 5-sided pyramid is indeed a polyhedron
with 6 faces and a pentagonal face, the answer to the problem is B). qed

We note at this point, that it is not sufficient to know that a polyhedron
with the required property must have at least 6 faces. We must
demonstrate the existence of a specific polyhedron with exactly 6 faces
in order to complete the proof. As we shall see, this aspect of problems

18



Mathematics Competitions Vol 15 No 2 2002

of this sort tends to be the more difficult. In this case, our knowledge of
pyramids helped us with the existence aspect of the proof.

Solution to Problem 2: The solution to this problem merely requires
the information about prisms we recalled earlier. We know that an n-
sided prism has 2n vertices and 3n edges. If a prism has 2002 vertices,
we have n = 1001, and the prism therefore has 3 · 1001 = 3003 edges.
The answer to the problem is therefore A). qed

Many similar problems can easily be stated simply by changing the
numbers in these problems. (In fact the same will hold for many of the
following problems.) Another way to find similar, or at least analogous,
problems is to exchange “faces” for “edges” or “vertices”. In this paper, I
will present a number of alternative problems, not always with solutions,
but an implicit challenge to the reader is always present to find more
similar problems to those stated. An example of such an analogous
problem to Problem 1 is the following:

Problem 5

A polyhedron has a 6-sided face. What is the smallest number of edges
the polyhedron can have?

A) 6 B) 7 C) 9 D) 12 E) 18

(The answer is D, of course.)

An interesting, if easy, problem of a similar type was posed as problem
14 of the UK Senior Mathematical Challenge 2002:

Problem 6

Which shape cannot be obtained as
the cross-section (in any direction)
of this solid, which is a triangular
prism with three rectangular faces?

19
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A) triangle B) rectangle C) trapezium D) pentagon
E) hexagon

Solution: The sides of the polygon resulting as a cross-section of the
polyhedron must be the lines that the intersecting plane has in common
with the planes of the faces of the polyhedron. Since the prism only
has five faces, the cross-section cannot have more than five sides. The
answer is therefore E). qed

Note that actually finding planes that yield the other four shapes as
cross-sections is not necessarily easy. Trying to do so is quite a valuable
exercise in spatial reasoning.

A number of problems can be derived by combining the elementary
numerical properties of pyramids, prisms and anti-prisms. For instance,
we can obtain new polyhedra by “gluing” together two of these
elementary building blocks if we choose them such that they have a
common k-sided face (Figure 2). The result is a polyhedron, the number
of whose vertices, edges and sides can easily be stated. If the parameters
for the original two polyhedra are v1, e1, f1 and v2, e2, f2 respectively,
the resulting “glued” polyhedron has

v = v1 + v2 − k, e = e1 + e2 − k and f = f1 + f2 − 2.

Figure 2
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One problem using this idea in the proof is the following:

Problem 7

A polyhedron has two n-sided faces (n > 3) and t triangular faces. How
many of the following values of t are possible?

1, 2, 3, 4, 5, 6, 7, 8

A) 2 B) 3 C) 4 D) 5 E) 6

Solution: The answer is B), since t can be equal to 4, 6 or 8, but not 1,
2, 3, 5 or 7. The proof of this is included in the following more general
(and more difficult) version of the problem.

Problem 8

A polyhedron has two n-sided faces (n > 3) and t triangular faces. How
many of the positive integers i with 1 ≤ i ≤ k are possible values for t
for any given positive integer k?

Solution: If a polyhedron has a face with at least four sides, it must
have at least five faces altogether by the reasoning used in Problem 1.
We therefore have f ≥ 5, and therefore t = f − 2 ≥ 3.

t can never be an odd number. If we assume that a polyhedron has
2 n-sided faces and t triangular faces, the fact that each edge of the
polyhedron is common to two faces means

e =
1
2
· (2n + 3t) = n +

3
2
· t,

but this is not an integer if t is odd.

t can, however, assume any even integer value greater than three. A
polyhedron with two 4-sided faces and four triangular faces can be
obtained as shown in Figure 3.
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Figure 3

Starting with a regular quadratic pyramid ABCDE, a point F is chosen
as shown, such that BF‖AE. The point F is then certainly in the plane
determined by A, B and E, and the polyhedron ABCDEF has two
4-sided faces and four triangular faces as required.

If we are given a convex polyhedron P with t triangular faces (t > 1),
we can construct a convex polyhedron P with t + 2 triangular faces in
the following manner.

Let A, B and C be the corners of a triangular face of P , and D be the
centroid of �ABC. Further, let X, Y and Z be the points in which the
line perpendicular to the plane of �ABC intersects the planes of the
faces of P having edges AB, BC and CA respectively in common with
�ABC. (We assume that X, Y and Z are all finite points and all are
on the opposite side of P with respect to the plane of �ABC. If this is
not the case for one or more of the points, we can replace the point or
points in question by any random point on the appropriate side of the
plane of �ABC without it affecting the validity of the construction.) If
we chose E as the mid-point of the line segment joining D to the point
among X, Y and Z closest to D, E is certainly on the opposite side of
P with respect to �ABC. Furthermore, P must lie completely on one
side of the plane joining A, B and E, since this is true for the planes
of both faces of P through AB and E was chosen between D and X, Y

22
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and Z. The same holds for the planes joining B, C and E and C, A and
E respectively.

We define a polyhedron P , whose faces are all identical to those of P
with the exception of �ABC, which is replaced by the new faces �ABE,
�BCE and �CAE. P is then certainly convex, and has t+2 triangular
faces as required.

We see that all even positive integer values for i greater than 3 are
possible values for t, and the answer to the question is therefore

0 if 1 ≤ k ≤ 3 and
[
k

2

]
− 1 if k > 3.

qed

A somewhat surprising result related to this idea is the following.
(Thanks go to Ingmar Lehmann for communicating this problem to me.)

Problem 9

We are given a quadratic pyramid and a triangular pyramid. All edges
of both pyramids are the same length a. We glue one of the faces of
the triangular pyramid completely onto one of the triangular faces of
the quadratic pyramid. How many vertices, edges and faces does the
resulting “glued” polyhedron have?

Solution: For the triangular pyramid (tetrahedron), we have v = 4,
e = 6 and f = 4, and for the quadratic pyramid we have v = 5, e = 8
and f = 5. By the ideas explained above, we would expect the solution
to this problem to be

v = 4 + 5 − 3 = 6, e = 6 + 8 − 3 = 11 and f = 4 + 5 − 2.

The result for the number of vertices v = 6 is indeed correct by the
reasoning stated above, but the results for e and f are not.

The somewhat surprising reason for this is the fact that two pairs of
triangular faces of the two pyramids end up in the same plane after
“gluing”, resulting in two rhombic faces of the “glued” polyhedron (see
Figure 4).
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We can see this by adding a line segment EF to the quadratic pyramid
ABCDE (with square face ABCD), such that EF‖AB‖CD and |EF | =
|AB| = |CD|. Since EF‖AB, all points A, B, E and F lie in a common
plane, and we have

� EBA = � BEF = 60o.

Since |EF | = |AB| = |EB|, we see that �EFB is equilateral. The same
holds for �EFC, and since �EBC must therefore also be equilateral,
EFBC is a regular tetrahedron.

Figure 4

Gluing the tetrahedron EFBC onto the quadratic pyramid ABCDE
therefore yields a polyhedron with triangular faces ADE and BCF and
4-sided faces ABCD (square) and ABFE and DCFE (rhombic). The
polyhedron therefore, somewhat surprisingly, has 5 faces and 9 edges
(f + v = e + 2 → 5 + 6 = 9 + 2). qed

We can note that this proof also includes the following result.

Problem 10

We are given a quadratic pyramid with all eight edges of equal length
and a regular tetrahedron. Prove that the angle between an edge and
a face of the tetrahedron is equal to the dihedral angle of the square
pyramid at any of the edges of the square face.

We now come to a slightly different type of problem, the first of which
is the following.
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Problem 11

A polyhedron P has a 5-sided face and a 4-sided face. These two faces
do not have a common edge. What is the smallest number of edges P
can have?

Solution: The smallest number of edges is 14. Since the 4- and 5-
sided faces do not have a common edge, there must be at least one
additional edge through each of the 5 vertices of the pentagonal side.
The polyhedron therefore cannot have less than 5 + 4 + 5 = 14 edges.

That such a polyhedron is possible can be shown in many ways, but two
such polyhedra can be derived from a cube or a regular 5-sided prism as
shown in Figure 5.

Figure 5

As already mentioned, further problems can be derived from problems of
this type by exchanging the variables we ask to minimize. An example
is the following:

Problem 12

A polyhedron P has a 5-sided face and a 4-sided face. These two faces
do not have a common edge. What is the smallest number of faces P
can have?

The answer here is 7. The solution is essentially the same as that for the
preceding problem.
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A very similar problem is also the following:

Problem 13

A polyhedron P has a 5-sided face and a 6-sided face. What is the
smallest number of faces P can have?

Solution: Since one of the faces of P is 6-sided, P must have at least 7
sides. One 7-sided polyhedron with the required property is pictured in
Figure 6.

Figure 6

The answer is therefore 7. qed

A useful concept for this type of problem is that of a “k-hedral vertex”.
Still restricting ourselves to convex polyhedra for simplicity’s sake, we
say that a vertex V of a polyhedron P is “k-hedral” if exactly k faces of
P share a common corner in V . Since any two neighboring faces among
these determine one edge of P with an end-point in V , k is also the
number of edges of P with V as an end-point.

We can immediately use this concept to formulate “dual” problems to
problems involving k-sided faces. The “dual” of any problem results
from the original by exchanging the concepts of “face” and “vertex”
(and simultaneously “common edge of two faces” and “edge joining two
vertices”). The dual problem to Problem 1, for instance, is the following:
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Problem 14

One vertex of a polyhedron is pentahedral. What is the smallest number
of vertices the polyhedron can have?

The answer to this problem, as to its dual, is again 6. (Note that
alternative expressions for “k-hedral” are used for small values of k. We
generally use “trihedral” for “3-hedral”, “tetrahedral” for “4-hedral”,
and similarly “pentahedral” and “hexahedral”. Note also that the
concept of “duality” as expressed here is neither very general nor very
precise. It is however sufficient for the purpose of developing problems
under the limited conditions we have imposed here.)

Not only does the concept of the k-hedral vertex help us formulate dual
problems, we can also combine conditions on k-hedral vertices and n-
sided faces to produce new problems. A few examples of this kind are
as follows:

Problem 15

Determine the smallest number of edges a polyhedron P can have if it
is known to have a 5-sided face and a pentahedral vertex.

Solution: If P has a 5-sided face, there must be at least three edges
with end-points in each of the corners of the 5-sided face, two of which
can be sides of the pentagonal face. There must therefore be at least
one edge with an end-point in each corner of the pentagonal face beside
the sides of the face, and P must therefore have at least 5 + 5 = 10
edges. A 5-sided pyramid does indeed have a 5-sided face and 10 edges,
and since its apex is a pentahedral vertex, such a pyramid is indeed a
polyhedron with the required properties. 10 is therefore the smallest
number of edges of such a polyhedron. qed

Problem 16

Determine the smallest number of edges a polyhedron P can have, if it
is known to have a 5-sided face and a tetrahedral vertex.

Solution: Since the tetrahedral vertex can either be one of the corners
of the 5-sided face or not, we must consider both of these cases.
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If the tetrahedral vertex V4 is a corner of the 5-sided face, P must have
at least 7 vertices, since the 5-sided face has 5 corners and two of the
edges with end-points in V4 must also have end-points which are not
corners of the 5-sided face. If V4 is not a corner of the 5-sided face, P
must also have a seventh vertex, since there must be an edge through
each of the 5 corners of the 5-sided face which is not a side of that face,
and not all 5 of these can have end-points in V4, since V4 is tetrahedral.
In either case, we see that P must have at least 7 vertices.

Figure 7

A well-known inequality of convex polyhedra (which I will discuss in
more detail in section 3) states that

e ≥ 3
2
v

must hold. Since v ≥ 7, we have e ≥ 21
2 , and therefore e ≥ 11. There is

indeed a polyhedron with the required properties with e = 11 as we see
in Figure 7, and it follows that the required number is 11. qed

In this problem, the existence of a polyhedron with the required
properties was shown by constructing one in various views. As was
stated before, the explicit construction of a polyhedron with required
properties is often the most difficult part of solving this type of problem.
Perhaps this is a reason that problems like this are not more popular,
since constructions of solids are not commonly studied in any depth in
most countries.

One way to avoid this, which is however much more advanced from
a theoretical standpoint, is to allow Schlegel diagrams in such proofs.
Schlegel diagrams are graphs associated with polyhedra. The vertices
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and edges of the graphs correspond to the vertices and edges of the
polyhedra. There is a fairly deep theorem in polyhedron theory stating
that any 3-connected graph can be realized as a convex polyhedron
and that the graph associated with a polyhedron is always 3-connected.
3-connectedness can be naively described as the property of any two
vertices being connected by three distinct paths. It can be shown that
this is equivalent to the property that any two vertices of the graph can
be removed, along with all edges having either as an end-point, without
disturbing the connectedness of the graph. (Figure 8)

Figure 8

It follows that all Schlegel diagrams are 3-connected graphs and vice
versa. (For more information, see [3].)

In Figure 7, we can interpret the horizontal projection of P as its Schlegel
diagram, since the projections of the two vertices that are not corners of
the 5-sided face lie inside the projection of this face.

In this paper, I will mostly show projections of polyhedra to illustrate
their existence, since I believe this to be more elementary, but also more
fun. While there are many complex results in graph theory relevant
to the study of polyhedra, I am attempting to keep them out of this
discussion as far as possible. In the next problem, I would however like
to give an example of how a graph-theoretical approach can lead to a
solution of this type of problem.

Problem 17

Determine the smallest number of edges a polyhedron P can have if it
is known to have a 5-sided face and a pentahedral vertex in one of the
corners of the 5-sided face.
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Solution: As stated, we shall consider the Schlegel diagram for this
solution. In Figure 9a we see the 5-sided face as the outer polygon of
the diagram. One of the corners A is pentahedral, so there are another 3
edges passing through this corner, apart from the sides of the pentagon.
We name the other end-points of these edges F , G and H as shown. P
must have at least 8 vertices, and due to the inequality

e ≥ 3
2
· v ≥ 12,

we see that P must have at least 12 edges. In fact, P must have more
than 12 edges.

If P had exactly 12 edges, it could not have more than 8 vertices, since
this would mean e ≥ 3

2 · 9 = 27
2 . In this case, P would have at least 14

edges. If we assume that P has the 8 vertices shown, each of the vertices
(other than A) must be at least trihedral, and since each edge has two
end-points, this means e ≥ 1

2 · (5 + 3 · 7) = 13. P must therefore have at
least 13 edges.

Figure 9

This is not possible either, however. Let us assume that P has 13 edges.
We shall try to add the missing 5 edges to the 8 already in Figure 9a.
One each must pass through each of the trihedral vertices B, C, D and
E. E must be joined with F , since joining E with G or H would leave
nothing to join F with. (The edges may not cross each other if they do
not have a common vertex in their common point.) Similarly, B must
be joined with H. This would leave us with 3 more edges, two of which
must originate in C and D, and two of which must pass through G. One
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of C and D must be joined to G, and one to one of the other two inner
points, say F .

The final edge must then join G and H in order for both to be trihedral,
but that means that A, F , D, C and G must lie in a common plane,
which is not possible if P is to be a polyhedron (Figure 9b). The only
way to solve this problem is by adding another edge, which can be done
in a number of ways (Figure 9c, 9d), and we see that the smallest number
of edges fulfilling all stated requirements is 14. qed

3 Some Properties of Polyhedra

In order to deal with the solutions to more complex problems, it will
help to remind ourselves of some important relationships pertaining to
numerical properties of polyhedra. In order to keep things simple, we
will continue to restrict ourselves to convex polyhedra, although it would
be enough here to restrict ourselves to polyhedra with genus 0 (i.e. no
“holes”).

For such polyhedra, perhaps the most important numerical relationship
is

EULER′s formula : v + f = e + 2,

whereby v denotes the number of vertices of the polyhedron, f the
number of faces and e the number of edges.

There are many proofs of this result, for instance in [2] or [5].

There are also a number of slightly less well known relationships between
v, f and e that can make interesting problems in their own right,
assuming that they are not already well known to students. (They can
be found in the literature, for instance in [5]).

Problem 18

Prove that
3f ≤ 2e and 3v ≤ 2e

hold for all convex polyhedra.
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Solution: Every face of a polyhedron P has at least 3 sides. Let fk be
the number of faces of P with k sides. Since each edge of P is a common
side of two of the faces of P , we have

e =
1
2
· (3f3 + 4f4 + 5f5 + . . .),

and therefore

2e = 3f3 + 4f4 + 5f5 + . . .

≥ 3f3 + 3f4 + 3f5 + . . .

= 3f,

proving the first inequality. The other can be proven analogously,
substituting the number of edges through each vertex for the number
of sides of each face. qed

Problem 19

Prove that
e + 6 ≤ 3f and e + 6 ≤ 3v

hold for all convex polyhedra.

Solution: In the preceding problem, we saw that

3v ≤ 2e

holds. Euler’s formula states

v = e − f + 2,

and substituting for v yields

3 · (e − f + 2) ≤ 2e,

or
3e − 3f + 6 ≤ 2e,

which is equivalent to
e + 6 ≤ 3f,
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proving the first inequality. The second is obtained by analogously
substituting

f = e − v + 2

in the inequality
3f ≤ 2e.

qed

Problem 20

Prove
v + 4 ≤ 2f ≤ 4v − 8 and f + 4 ≤ 2v ≤ 4f − 8.

Solution: By Euler’s formula, we have

2v + 2f = 2e + 4.

Since 3f ≤ 2e and 3v ≤ 2e hold, we have

2v + 2f ≥ 3f + 4 ⇒ 2v ≥ f + 4

and
2v + 2f ≥ 3v + 4 ⇒ 2f ≥ v + 4.

Multiplying by 2 yields

2f ≤ 4v − 8 and 2v ≤ 4f − 8.

qed

Armed with this knowledge, we can now readily solve Problem 3.

Solution to Problem 3: Let m be the number of hexagonal faces of
polyhedron P (recalling that n denotes the number of pentagonal faces).
P then has

f = m + n

faces. Since each edge is shared by two faces, the number of edges of P
is

e =
6m + 5n

2
,
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and since each edge joins two vertices and three edges pass through each
vertex, the number of vertices of P is

v =
2
3
· e =

6m + 5n

3
.

By Euler’s formula, we have

v + f = e + 2,

and substituting yields

6m + 5n

3
+ (m + n) =

6m + 5n

2
+ 2,

which simplifies to
n = 12.

qed

We can note that the regular dodecahedron and the “soccer ball”
(truncated icosahedron) are polyhedra of this type, with m = 0 and
m = 20 respectively.

Polyhedra with “Very Different” Faces

Let us recall that problem 4 in Section 1 asks us to “find all bounded
convex polyhedra such that no three faces have the same number of
edges”. This is, of course, a very interesting problem in itself, and
we shall consider its solution in a moment. First, however, we note
that this problem suggests a whole category of numerical polyhedra
problems, namely problems concerning polyhedra with “very different”
faces. We can take this to (loosely) mean polyhedra with as many faces
with different numbers of sides as possible. (To clarify the terminology,
we shall use the term “edge” when it applies to a bounding line segment
of a polyhedron, but “side” when it applies to a bounding line segment
of a face of the polyhedron.)

A few such problems are as follows:
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Problem 21

Does a polyhedron exist, no two of whose faces have the same number
of sides?

Solution: No such polyhedron can exist. In order to see this, we assume
that one does exist, and then note that one specific face of the polyhedron
must have more sides than any other, since each face has a different
number of sides. Let nmax be this maximum number. Since some other
face of the polyhedron must have an edge in common with the nmax-
sided face in each of its sides, and no two faces of the polyhedron can
have more than one side in common, we see that f ≥ nmax + 1 must
hold. On the other hand, the number of sides of each of the faces of the
polyhedron must be no less than 3 and no more than nmax. Since no
two faces have the same number of sides, it follows that f ≤ nmax − 2
holds, and we have a contradiction. qed

This result immediately implies its dual:

Problem 22

Does a polyhedron exist, no two of whose vertices are the end-points of
the same number of edges?

(This was problem number 4 in round 38 of the International
Mathematical Talent Search. There, it was stated as follows: Prove
that every polyhedron has two vertices at which the same number of
edges meet.)

Solution: Since the existence of such a polyhedron would imply the
existence of its dual, which was proven not to exist in the previous
problem, there can be no such polyhedron. Another way to see this
is to retrace the steps of the previous solution, replacing the term “face”
by “vertex” and f by v. qed

We can note that these proofs also show us that there can be no
polyhedra with exactly one pair (or triple) of faces with the same number
of sides, and otherwise no such pair of sides. Nor can there exist a
polyhedron with exactly two such pairs of faces. (The analogous claims
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hold for the vertices.) Some further problems suggested by these results
are therefore the following:

Problem 23

Does a polyhedron exist with exactly one pair of faces with an equal
number of sides?

Problem 24

What is the smallest number m such that there exists a polyhedron with
f = k + m faces, k of which can be chosen such that no two of these k
have an equal number of sides?

Solution: The contradiction used in Problem 21 will always hold for
m < 3. We see that m ≥ 3 must hold, and there are many examples for
polyhedra with m = 3, such as those shown in Figure 10. qed

Figure 10

Note that f ≥ 2k holds for all these polyhedra. The following question
arises:

Problem 25

Let f be the number of faces of a polyhedron and k be the largest number
of faces that can be chosen such that no two of the chosen faces have an
equal number of sides. Is it always true that f ≥ 2k must hold?
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The somewhat surprising (for me) answer is no, as we can see by taking
a look at the following example (due to Gottfried Perz).

Figure 11

Starting with half of an octahedron, we cut off the top, parallel to the
4-sided face as shown in the left part of Figure 11. The result is a
polyhedron with 5 four-sided faces, 2 triangular faces and a hexagonal
face. Successively cutting off three vertices as shown in the right part of
Figure 11 yields a polyhedron with 11 faces, one each of which has 5, 6, 7
and 8 sides, 3 of which have 4 sides, and 4 of which have 3 sides. For
this polyhedron, we have f = 11 and k = 6, and since 11 < 2 · 6, we see
that this example contradicts f ≥ 2k. qed

The next question that naturally arises from this is the following:

Problem 26

Let f be the number of faces of a polyhedron and k be the largest number
of faces that can be chosen such that no two of the chosen faces have an
equal number of sides. Determine the largest possible lower bound for
the parameter a = f

k .
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Unfortunately, I am not yet aware of a full solution to this problem.
An obvious lower bound for a is 1, but as we know from Problem 21,
this value is not attainable, since all sides of a polyhedron cannot be a
different number. The value of a for the example shown in Figure 11
is 11

6 , and the value of a for the following object (also due to Gottfried
Perz) is

Figure 12

The object is half of a cube (the cube has been cut through its mid-point
perpendicular to its diagonal), with a vertex cut off as shown. Such an
object has 8 faces, of which three are 3-sided, two are 5-sided, and one
each 4-,6- and 7-sided. Perhaps readers of this paper will be inspired to
further improve on this lowest value for a, or even to find the largest lower
bound for all possible values of a. (Experimenting with such polyhedra
seems to indicate that f ≥ 2k − 2 ⇔ f

k ≥ 2 − 2
k must hold. If this is

true, 8
5 is indeed the smallest attainable value of a, since we can show

that k = 4 implies f ≥ 7 and k = 3 implies f ≥ 6.)

We are now ready to turn our attention to Problem 4. A simpler version
of the problem is the following:

Problem 27

Find all bounded convex polyhedra with the following property: If nmax

is the maximum number of sides of any of the faces of the polyhedron,
the polyhedron has exactly two faces with 3, 4, . . . , nmax sides each.
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Solution: To simplify notation, let x = nmax−2. Since any polyhedron
with the required property has two faces with 3, 4, . . . , (x + 2) sides, the
total number of faces f must be equal to 2x. The number e of edges of
such a polyhedron must be equal to

e =
1
2
· 2 · (3 + 4 + . . . + (x + 2))

=
x(x + 5)

2
,

and since each edge is bounded by two vertices and each vertex is an end-
point of at least three edges, the number of vertices of the polyhedron
must satisfy the condition

v ≤ 2
3
· e =

x(x + 5)
3

.

(Note that the inequality 3v ≤ 2e was part of Problem 18.)

Since all polyhedra with the required property certainly satisfy Euler’s
formula, we have

v = e + 2 − f.

This means that

v =
x(x + 5)

2
+ 2 − 2x ≤ x(x + 5)

3
or

3x2 + 15x + 12 − 12x ≤ 2x2 + 10x

⇔ x2 − 7x + 12 ≤ 0
⇔ (x − 3)(x − 4) ≤ 0

must hold, and this is only possible for x = 3 or x = 4. In both cases,
there do exist polyhedra with the required property (Figure 13), and
these are the only two. qed

Note that the “uniqueness” of these polyhedra is meant in a vaguely
topological sense, i.e. all kinds of transformations can yield different
looking polyhedra, but these will have essentially the same structure
with respect to the relative positions of vertices, edges and faces.
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Figure 13

Solution to Problem 4: (The idea for this proof is due to Martin
Windischer.) Again we let nmax denote the maximum number of sides
of any of the faces of the polyhedron and x = nmax − 2. If fk denotes
the number of faces of P with k sides, we have

f = f3 + f4 + . . . + fx+2,

with fi ∈ {0, 1, 2} for 3 ≤ i ≤ x + 1 and fx+2 ∈ {1, 2}.

We define the number of “missing faces”

t := 2x − f

and the number of “missing edges”

s :=
x+2∑
i=3

(2 − fi) · i.

For the defining values of P , we then have

f = 2x − t

e =
1
2
· (x(x + 5) − s)

and v ≤ 1
3
· (x(x + 5) − s).
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By Euler’s formula, we therefore have

1
2
· (x2 + 5x + 4 − s) = e + 2 = f + v ≤ 1

3
· (x2 + 5x − s) + 2x − t

⇔ 3x2 + 15x + 12 − 3s ≤ 2x2 + 10x − 2s + 12x − 6t

⇔ x2 − 7x + 12 ≤ s − 6t.

We now note that t and s are not completely independent. If t = 0,
we must have s = 0. If t = 1, we have s ≤ x + 2, since the number of
edges of the single “missing face” is at most x + 2. Similarly, we have
s ≤ (x + 2) + (x + 1) = 2x + 3 for t = 2, s ≤ (x + 2) + 2(x + 1) = 3x + 4
for t = 3, s ≤ (x + 2) + 2(x + 1) + x = 4x + 4 for x = 4, and so on. In
general we have

s ≤ tx + w(t),

where w(t) is defined by w(0) = 0, w(1) = 2 and w(t+2) = w(t)+3− t.

In order for it to be possible that

x2 − 7x + 12 ≤ s − 6t

holds for some value of x, it must be true that

x2 − 7x + 12 ≤ s − 6t ≤ tx + w(t) − 6t

must hold. This is only possible if

x2 − 7x + 12 − tx − w(t) + 6t = 0

has a real root, i.e. if its discriminant is non-negative. This is the case if

(t + 7)2 − 4 · (12 − w(t) + 6t) ≥ 0
⇔ t2 + 14t + 49 − 48 + 4w(t) − 24t ≥ 0
⇔ t2 − 10t + 1 + 4w(t) ≥ 0.

This inequality is certainly correct for t = 0 and t = 1, since both

02 − 10 · 0 + 1 + 4 · 0 = 1 ≥ 0

and
12 − 10 · 1 + 1 + 4 · 2 = 0 ≥ 0
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hold. We shall now show by induction that the inequality is not correct
for any t ≥ 2.

For t = 2, we have

22 − 10 · 2 + 1 + 4 · 3 = −3 < 0

and for t = 3
32 − 10 · 3 + 1 + 4 · 4 = −4 < 0.

If we assume that
t2 − 10t + 1 + 4w(t) < 0

holds for some t, we have

4w(t) < −t2 + 10t − 1
⇒ 4w(t) < −t2 + 10t − 1 + 4

⇒ 4(w(t) + 3 − t) < −t2 + 10t − 1 + 4 + 12 − 4t

= −t2 − 4t − 4 + 10t + 20 − 1
= −(t + 2)2 + 10(t + 2) − 1,

or
(t + 2)2 − 10(t + 2) + 1 + 4w(t + 2) > 0,

and it follows that
t2 − 10t + 1 + 4w(t) < 0

holds for all t ≥ 2. No polyhedron with the required properties can
therefore exist with t ≥ 2. The only possible values for t are therefore 0
or 1. The case t = 0 was discussed in problem 27, and it only remains
to consider the case t = 1.

For t = 1 we have s ≤ x + 2, and therefore

x2 − 7x + 12 ≤ s − 6t ≤ x + 2 − 6
⇔ x2 − 8x + 16 ≤ 0
⇒ x ∈ {1, 2, . . . , 9}.

Since t is equal to 1 and P has a face with x + 2 sides, each of which
has a common edge with a different face, we have f ≥ x + 3, and due to
f = 2x − t, this implies

2x − 1 ≥ x + 3,
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or x ≥ 4. Since
s ≤ tx + w(t) = x + 3

holds and s is even due to e = 1
2 · (x(x+5)−s) (noting that one of x and

x + 5 must be even and that e is an integer), we must consider various
possibilities. If x = 4, we have s ≤ 4 + 2 = 6 on the one hand, and due
to s ≥ x2 − 7x + 12 + 6t, s ≥ 16 − 28 + 12 + 6 = 6 on the other hand.
The only possible value for s in this case is therefore s = 6.

If x = 5, we have s ≤ 5+2 = 7 on the one hand and s ≥ 25−35+12+6 =
8 on the other hand, and there can be no possible value for s. Since
similar contradictions are obtained for all larger values of x, we see that
there is only one possible polyhedron P with t = 1. This polyhedron has
x = 4, and therefore f = 6, and since s = 6, it must have two 3-sided
faces, two 4-sided faces, two 5-sided faces and one 6-sided face. Such
a polyhedron is shown in Figure 14. We see that there are only three
possible polyhedra with the required property. qed

Figure 14

5 “n-faced” Polyhedra

In this section, we will consider problems pertaining to polyhedra whose
faces all (or almost all) have the same number of sides. We name a convex
polyhedron “n-faced”, if its faces all have exactly n sides. For instance,
deltahedra are examples of 3-faced polyhedra. If the faces of a convex
polyhedron are all n-gons with the same value of n with the exception of
a small, well-defined number of faces, with a different number of sides,
we call the polyhedron “quasi n-faced”.
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Question 28

Prove that no n-faced polyhedron can exist for n ≥ 6.

Solution: If a polyhedron P has f faces, all of which have n ≥ 6 sides,
the fact that each edge of P is shared by two faces means that the number
of edges e of P must fulfill the inequality

e =
1
2
· n · f ≥ 1

2
· 6f = 3f.

This, however, is a contradiction to the inequality

e ≤ 3f − 6,

which was established in Problem 19. qed

Problem 29

Prove that there cannot exist a 3-faced polyhedron with an odd number
of faces.

Solution: (This problem was posed as Problem 3 in [8].) If such a
polyhedron exists with f triangular faces, the number of edges of the
polyhedron in question must be

e =
1
2
· 3f,

which is not an integer if f is odd, giving us a contradiction. qed

We note that this proof will also work if we wish to prove the
impossibility of 5-faced polyhedra with an odd number of faces, or more
generally, of any polyhedron with an odd number of odd-sided faces.

Problem 30

Let P be a 3-faced polyhedron with f faces. Determine all possible
values of f for which such a polyhedron exists.

Solution: In the preceding problem, we saw that f cannot be odd. Also,
since P has a triangular face, which must have a common edge with each
of three different faces, f cannot be smaller than 4. All even values for
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f ≥ 4 are possible, however. For f = 4, P is simply a tetrahedron, and
for f = 2k with k ≥ 3, a double k-sided pyramid has exactly f = 2k
triangular faces (Figure 15). qed

Figure 15

After considering these problems introducing us to the idea of n-faced
polyhedra, we can turn our attention to the following series of questions
dealing with the number of edges e of n-faced polyhedra.

Problem 31

Let P be a 3-faced polyhedron with e edges. Prove 3|e.

Solution: P has f faces, and each of these faces has three sides. Each
edge of P is common to two of the faces, and we therefore have

e =
1
2
· 3f.

This number is certainly divisible by 3. qed

Since the proof is completely analogous, we also have the following:

Problem 32

Let P be a 5-faced polyhedron with e edges. Prove 5|e.

Also, a quite similar problem is the following:
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Problem 33

Let P be a 4-faced polyhedron with an even number of sides and e edges.
Prove 4|e.

Solution: Since P has an even number of faces, we can write f = 2k.
The number of edges of P is therefore equal to

e =
1
2
· 4f =

1
2
· 4 · 2k = 4k,

which is certainly divisible by 4. qed

If we take a closer look at the last 3 problems, it seems reasonable to
ask the following question:

Problem 34

Let P be an n-faced polyhedron with e edges. Is it always true that n|e
must hold?

If we take a look at what we know so far, Problem 27 showed us that no
n-faced polyhedron exists for n ≥ 6, and it is quite obvious that there
can be none for n ≤ 2. For n = 3 and n = 5, we have just shown that the
claim is true, as we have also shown for n = 4 if P has an even number
of faces. Answering the question at hand is therefore closely related to
answering the following question:

Problem 35

Do 4-faced polyhedra with an odd number of faces exist?

Solution to Problems 33 and 34: The surprising (to me) answer is
that 4-faced polyhedra with an odd number of faces do indeed exist, as
we can see in the examples due to Gottfried Perz and Christopher Albert
in Figure 16.

The “Perz Polyhedron” is derived from a cube, as can be seen in the
Figure. The resulting polyhedron has 9 faces, 18 edges and 11 vertices.
The “Albert Polyhedron” results from a double truncated quadratic
pyramid as shown. This polyhedron has 11 faces, 22 edges and 13
vertices. In both cases, we see that the number of edges (18 and 22
respectively) is not divisible by the number of sides of each face (4). qed
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Figure 16

Having determined the existence of such 4-sided polyhedra with odd
values of f , it is interesting to ask the analogous question to Problem 30
for 4-sided polyhedra.

Problem 36

Let P be a 4-faced polyhedron with f faces. Determine all possible
values of f for which such a polyhedron exists.

Solution: We shall show that 4-faced polyhedra with f faces exist for
all values f ≥ 8 and for f = 6, but not for f = 7 or f ≤ 5. In order to
prove this, we shall divide the proof into the following steps:

a) 4-faced polyhedra exist for all even values of f ≥ 6.

b) 4-faced polyhedra exist for all odd values of f ≥ 9.

c) No 4-faced polyhedra exist for f ≤ 5.

d) No 4-faced polyhedra exist for f = 7.

ad a): If f = 2k with k ≥ 3, there certainly exists a 4-sided double
“k-pyramid”, as illustrated in Figure 17.
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Figure 17

ad b): We already know of the existence of 4-sided polyhedra with 9 and
11 sides from the preceding problem. If we can show that the existence
of a 4-sided polyhedron with f faces implies the existence of one with
f + 4 faces, this part of the proof is finished.

This is indeed the case. If P is a 4-sided polyhedron with f faces, and
the vertices of one such face are A, B, C and D, we can define a new
polyhedron P ′ with f + 4 faces in the following manner. The planes
of the faces of P divide space into a finite collection of sections, two of
which border on the quadrilateral ABCD. P is one of these. We choose
a point S in the interior of the other, and define A′ as the mid-point of
SA, B′ as the mid-point of SB, and similarly C ′ and D′. We now define
P ′ as having all faces in common with P except ABCD, which we replace
by the five quadrilaterals A′B′C ′D′, ABB′A′, BCC ′B′, CDD′C ′ and
DAA′D′. If P was convex, so is P ′, and P ′ certainly has f + 4 4-sided
faces, as required.

ad c): If a polyhedron P has a 4-sided face, it must have at least four
more faces, since each side of the 4-sided face must be a common edge
with a different face. We therefore certainly have f ≥ 5. If f = 5, P
must have e = 4·5

2 = 10 edges, and therefore v = 10 + 2− 5 = 7 vertices.
This is not possible, since P must have a face ABCD with at least three
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edges through each of the vertices A, B, C and D. One each of these is
not a side of ABCD, and none of these can have a common end-point,
since this would mean that P would have a triangular face. (If the edges
through A and B had a common vertex E, for instance, ABE would be
a face of P .) We see that f ≤ 5 is not possible for 4-sided polyhedra.

ad d): To prove the impossibility of f = 7 for a 4-sided polyhedron P , it
is useful to have a look at what a Schlegel diagram of P would look like,
if it existed. We assume that such a P does indeed exist. Since f = 7,
we have e = 4·7

2 = 14 and v = 14+2−7 = 9. If each of the vertices were
trihedral, the number of faces would be f = 3·9

4 , which is not possible.
Indeed, since we know that f = 7, the only possibility for the 9 vertices
is that 8 of them are trihedral and one tetrahedral, since this is the only
case that yields f = 3·8+4

4 = 7.

If A is the tetrahedral vertex, P has edges AB, AC, AD and AE. Since
each of the faces of P is 4-sided, P must have faces ABFC, ACGD,
ADHE and AEKB. Defining these four faces, we have already “used
up” all 9 vertices and 12 edges, and the vertices F, G, H and K can
therefore not be trihedral, which is a contradiction. We see that f = 7
is not possible for 4-sided polyhedra. qed

Having asked which values of f are possible for 3- and 4-faced polyhedra,
it is interesting to ask the same of 5-faced polyhedra. The only such
polyhedron known to most people is the dodecahedron, and it takes
some thought to find another. One question we can therefore ask is the
following:

Problem 37

We are given a polyhedron whose f faces are all pentagons. Can f have
any value other than 12? Is there an upper limit to the possible values
of f?

Solution: There is no upper limit to the possible values of f . One way to
see this is to note that it is possible to augment any 5-sided polyhedron
with more pentagonal sides in a similar fashion to that described for
4-sided polyhedra in part b) of the preceding problem.
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Figure 18

Figure 18 shows us the horizontal and vertical projections of such an
augmentation. The horizontal projection is simultaneously the Schlegel
diagram of a dodecahedron, and it is always possible to replace a
pentagon in the Schlegel diagram of any 5-sided polyhedron with this
graph. The full proof that such an augmentation is always possible is
somewhat more convoluted, but application of the result on 3-connected
graphs and polyhedra mentioned in section 2 yields one such proof.

qed

Applying the augmentation described in this problem to the dodecahe-
dron shows us that we can successively replace any pentagonal face of
a 5-sided polyhedron by 11 such faces. This means that we can “build”
5-sided polyhedra with f = 2 + 10k faces for any positive integer values
of k. Of course, this immediately leads us to the next question, namely:

Problem 37

Does there exist a 5-sided polyhedron with f faces and f �= 2 + 10k for
all positive integer values of k?

Solution: The answer to this question is yes. An interesting class of
such polyhedra is due to Gerd Baron, an example of which is shown in
Figure 19.
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Figure 19

The middle part of such a polyhedron is made up of pentagons resulting
from the rectangular sides of a regular 2k-sided prism, augmented by
points alternately attached to opposite sides. “Closing” the polyhedron
with the planes joining these points with the sides of the pentagons as
shown yields a polyhedron with 4k pentagonal sides for any value of
k ≥ 3. This means that we can obtain such values for f as 4 · 4 = 16 or
4 · 5 = 20, which are not of type 2 + 10k. qed

Of course, we would like complete information concerning which values
of f are possible for 5-sided polyhedra. We know from the comment
after Problem 29 that f can never be odd. Since all values of the form
f = 2 + 10k, k ≥ 1 and f = 4j, j ≥ 3 are possible, we can produce
5-sided polyhedra with

f = 12, 16, 20, 22, 24, 28, 32, . . . .

The augmentation described in Problem 37 can also be applied to “Baron
Polyhedra”, of course, and so we can also produce 5-sided polyhedra with
f = 16+10k, f = 20+10k, f = 24+10k and f = 28+10k. This means
that all even values of f ≥ 20 are possible. Are f = 14 and f = 18
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possible? I do not know the answer to this question yet. I believe that
f = 14 may not be possible, but f = 18 is unclear.

What remains to be shown is the following:

Problem 39

Prove that there cannot exist a 5-sided polyhedron with f faces and
f < 12.

I leave the proof of this to the reader (mainly because I can’t think of
an elegant proof, even though the result seems so obvious).

6 “Two-faced” Polyhedra

There is no fundamental way for polyhedra to be dishonest or unfaithful,
and their faces cannot be 2-sided. Obviously, something else is implied
in the title of this section.

We define a “two-faced” polyhedron as a convex polyhedron P , whose
faces are all either k-sided or m-sided, with k and m being different
positive integers. In order for P to qualify as being two-faced, we assume
that fk and fm are both greater than 0, whereby fi denotes the number
of faces with i sides. If fk = p and fm = q, we will call P a “(pk; qm)-
polyhedron”.

Most commonly studied polyhedra fall into this category. Consider the
following table:

regular n − sided pyramid, n > 3 : (n3; 1n)
regular n − sided prism, n ≥ 3, n �= 4 : (n4; 2n)
regular n − sided anti − prism, n > 3 : (2n3; 2n)

some Archimedean solids : (125; 206), (83; 64), (43; 46).

While it may seem that such polyhedra are too well known to make them
well suited to this type of question, they are in fact very much so.

Problem 40

Does there exist a (13; q4)-polyhedron for some positive integer q? If so,
determine the smallest possible value of q. If not, prove why not.

52



Mathematics Competitions Vol 15 No 2 2002

Solution: There can be no such polyhedron. If one existed, it would
have

e =
1 · 3 + q · 4

2
= 2q + 1 +

1
2

edges, and this is not a whole number. qed

Problem 41

Does there exist a (1k; qm)-polyhedron with an even value of k and an
odd value of q?

Solution: The only “standard” (1k; qm) polyhedron is the n-sided
pyramid, for which we have k = q = n (and m = 3). The parity of
k and q must be the same for any pyramid, of course. If a polyhedron
with the required property exists, it cannot be a pyramid.

Since the number of edges of such a polyhedron is

e =
k + q · m

2
=

k

2
+ q · m

2
,

m must be an even number. If both k and m are to be even (but
different), it is not a good idea to search for solutions where m > 4 (see
also Problem 42). An obvious place to start looking for a polyhedron
with the required property is k = 6 and m = 4. There does indeed exist
a (1k; qm) polyhedron with k = 6, m = 4 and q odd, for instance the
(16; 94)-polyhedron as shown in Figure 20. qed

Figure 20
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Problem 42

Prove that there cannot exist a (1k; qm)-polyhedron with m ≥ 6.

Solution: If such a polyhedron did exist, it would have f = q + 1 faces
and e = m

2 · q + k
2 edges. In Problem 19 we saw that

e + 6 ≤ 3f

must hold for any convex polyhedron, and it would therefore follow that

m

2
· q +

k

2
+ 6 ≤ 3q + 3 ⇔

(m

2
− 3

)
· q +

k

2
+ 3 ≤ 0

must hold. If m ≥ 6 holds, it follows that m
2 − 3 ≥ 0 also holds however,

and this is then certainly not possible. qed

Problem

Prove that there cannot exist a (14; qm)-polyhedron with even m.

Solution: If m is even and not equal to 4, we must have m ≥ 6, since
each face of a polyhedron must have at least 3 sides. The result of the
preceding problem therefore shows us that such a polyhedron cannot
exist. qed

Problem 44

Does there exist a (1k; qm)-polyhedron with k < m?

Solution: If such a polyhedron exists, there are many limitations to the
possible values of k, m and q. First of all, we can not have k ≥ 5 (and
therefore m ≥ 6), as was just shown in Problem 42. The impossibility of
a (13; q4)-polyhedron was shown in Problem 40. The only categories of
such polyhedra that can possibly exist are therefore (13; q5) and (14; q5).
In order for the number of edges to be an integer, the value of q must be
odd in the former case, and even in the latter. Finding a polyhedron in
either case is not easy. One example for a (13; q5)-polyhedron is shown
in Figure 21. (I do not know yet whether a (14; q5)-polyhedron exists or
not.)
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Figure 21

In this figure, we see the polyhedron cut in two. Each piece has
a hexagonal periphery, and the Schlegel diagrams of each half are
illustrated. One piece is made up of only 18 pentagons, and the other is
made up of 13 pentagons and one triangle. The resulting polyhedron is
therefore of type (13; 315). qed

7 Additional Questions

In this final section, I have listed a number of additional questions
suggested by the problems discussed in this paper. I have not ordered
them according to difficulty. While some of these problems are quite
simple, some are not at all easy to solve. Those for which I do not know
the full answer are marked with an asterisk. I hope that readers will find
some enjoyment in solving these problems.

Problem 45

Does a 4-faced polyhedron exist, such that an even number of faces meet
at each vertex? If so, what is the smallest number of faces that such a
polyhedron can have?

Problem 46

Is it true that the edges of a 4-faced polyhedron can always be colored
with two colors, such that no two edges of the same color meet in a
common vertex?
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Problem 47

Does a 4-faced polyhedron exist, such that exactly three edges meet in
each vertex and f > 6? For which values of f does a polyhedron with
this property exist? (Note that a cube is such a polyhedron with f = 6.)

Problem 48*

Let v (the number of vertices of a polyhedron) be given. Determine the
smallest possible values for f and e.

Problem 49*

For which values of p can we find k and m such that a (pk; pm)-
polyhedron exists?

Problem 50*

For which values of q can we find k and m such that a (1k; qm)-polyhedron
exists?

Problem 51

For which values of q does a (14, q3)-polyhedron exist?
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The 43rd International Mathematical Olympiad,

19-30 July 2002,

Glasgow, U.K.

The IMO experience is always a thoroughly enjoyable one. For students
all around the world it is an opportunity to meet other talented young
students as well as to be challenged by two exams each consisting of three
first class problems. For Leaders and their Deputies being involved with
other mathematicians and cooperating together in making jury decisions
(Leaders only) certainly involves a great deal of work, but it is very
rewarding.

This, the 43rd IMO, with 84 countries and 479 students made it the
largest IMO since its inception.

At the beginning of every IMO, Leaders are geographically separated
from their Deputies and the students. They form what is called the
“Jury”. The Jury amongst other things sets the examination papers,
approves translations of the papers into various languages and decides
on awards for the students.

The first task at hand was to study the shortlisted problems. Leaders
had 11

2 days in which to study them without solutions, and then with
solutions. Indeed it is all too easy to dismiss a problem as very easy once
one has seen a solution. Trying a problem for oneself really does give one
an accurate feel for its difficulty. I must say that the Problem Selection
Committee under the guidance of Imre Leader (University of Cambridge)
did an excellent job. There was an abundance of very nice problems of
varying difficulties. The Problem Selection Committee had worked on
the proposed problems for weeks, coming up with their own solutions to
all of them and finally shortlisting 27 problems. Unfortunately four of
them had to be deleted from consideration because they were judged as
having been too similar to known problems. I must say that the IMO is
inexorably getting harder and harder. Many team leaders did not even
manage to solve a third of the shortlisted problems.

The problems that ended up making it on to the papers were a nice
blend of many areas. They came from three different continents with
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two from Romania, and one each from Colombia, Korea, India and
Ukraine. The easier problems being of combinatorics, number theory
and classical geometry. There was a functional equation which ended up
being moderately difficult. The two difficult questions turned out to be
extremely difficult, one being a technical algebra question disguised as
number theory and the other a combinatorial geometric inequality. Only
three students, two from China and the other from Russia, managed to
solve these two questions, and they achieved perfect scores for the entire
IMO exams.

While all this was occurring, the Deputies with their students were
getting comfortable with their surroundings. Many teams had traveled
half the world to be there and were recovering from jetlag.

The Opening Ceremony provided an opportunity for each team to parade
on stage. There were a few short speeches and some entertainment in
the form of Scottish dancing to bagpipe accompaniment as well as some
mathematical juggling. Even at the Opening Ceremony Leaders were all
kept separate from everyone else in a balcony area. However, they still
had occasion to wave at their students from a distance.

During the examinations students are allowed to ask for clarification of
the paper for the first half hour. Their questions were faxed to the Jury
and the responses returned promptly. These were all dealt with quite
smoothly, although one student wanted to know where the 2005 IMO
would be held, to which the Jury’s response was “concentrate on the
exam”.

After the two exams, the Leader and his Deputy were united to assess
their students scripts. Local professionals also assessed the scripts and
met with the leaders of each country to decide on scores to award. This
is called “coordination”. The coordination process was absolutely first
class. Many of the coordinators were ex-olympians and thus had an
excellent feel for the process. One coordinator, Tim Gowers, was a
Field’s medalist in 1998. The actual coordination was very strict but
consistent. Students were rewarded for complete solutions whereas part
marks were very hard to come by. They were only awarded when real
progress had been made.

In the final Jury meeting, cutoff scores for the various medals were
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decided. The jury awarded 39 golds, 73 silver and 120 bronze medals.
A further 66 students received an honourable mention for solving one
question perfectly.

It was a treat for some teams to meet HRH Princess Anne. The top
countries from each continent had a few minutes private audience with
her. She personally presented all the gold medals and spoke to all
delegates at the closing ceremony.

Finally I would like to note the outstanding role played by Chairman of
the Jury, Adam McBride (University of Strathclyde), who ensured that
the Jury meetings ran smoothly and progressively.

Angelo Di Pasquale
Australian IMO Team Leader
email: pasqua@ms.unimelb.edu.au

* * *
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Questions from the 43rd International Mathematical Olympiad

First Day

Q1 Let n be a positive integer. Let T be the set of points (x, y) in the
plane where x and y are non-negative integers and x+y < n. Each
point of T is coloured red or blue. If a point (x, y) is red, then so
are all points (x′, y′) of T with both x′ ≤ x and y′ ≤ y. Define an
X-set to be a set of n blue points having distinct x-coordinates, and
a Y -set to be a set of n blue points having distinct y-coordinates.
Prove that the number of X-sets is equal to the number of Y -sets.

Q2 Let BC be a diameter of the circle Γ with centre O. Let A be a
point on Γ such that 0◦ < � AOB < 120◦. Let D be the midpoint
of the arc AB not containing C. The line through O parallel to
DA meets the line AC at J . The perpendicular bisector of OA
meets Γ at E and at F . Prove that J is the incentre of the triangle
CEF .

Q3 Find all pairs of integers m, n ≥ 3 such that there exist infinitely
many positive integers a for which

am + a − 1
an + a2 − 1

is an integer.
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Second Day

Q4 Let n be an integer greater than 1. The positive divisors of n are
d1, d2, . . . , dk where

1 = d1 < d2 < · · · < dk = n.

Define D = d1d2 + d2d3 + · · · + dk−1dk.
(a) Prove that D < n2.
(b) Determine all n for which D is a divisor of n2.

Q5 Find all functions f from the set R of real numbers to itself such
that

(f(x) + f(z)) (f(y) + f(t)) = f(xy − zt) + f(xt + yz)

for all x, y, z, t in R.

Q6 Let Γ1,Γ2, . . . ,Γn be circles of radius 1 in the plane, where n ≥ 3.
Denote their centres by O1, O2, . . . , On respectively. Suppose that
no line meets more than two of the circles. Prove that

∑
1≤i<j≤n

1
OiOj

≤ (n − 1)π
4

.
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Distribution of Awards

Country Score Gold Silver Bronze Hon Men

Albania 25 - - 1 -

Argentina 96 - - 5 -

Armenia 33 - - - 1

Australia 117 1 2 1 1

Austria 50 - - 1 3

Azerbaijan 37 - - 1 1

Belarus 135 1 2 3 -

Belgium 58 - - 1 3

Bosnia and Herzegovina 42 - - 1 -

Brazil 123 - 1 5 -

Bulgaria 167 3 2 1 -

Canada 142 1 3 1 1

China 212 6 - - -

Colombia 81 - - 3 3

Croatia 70 - - 2 1

Cuba 78 - - 2 3

Cyprus 29 - - - -

Czech Republic 115 - 2 3 -

Denmark 53 - - - 3

Ecuador 3 - - - -

Estonia 75 - 2 - 2

Finland 79 - - 3 3

France 127 - 2 3 -

Georgia 84 - - 2 2

Germany 144 2 1 2 1

Greece 62 - - 2 -

Guatelmala (3 members) 4 - - - -

Hong Kong 120 1 2 2 -

Hungary 142 1 2 3 -

Iceland 36 - - - 3

India 156 1 3 2 -

Indonesia 38 - - 1 1

Iran 143 - 4 2 -
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Country Score Gold Silver Bronze Hon Men

Ireland 125 - - - 1

Israel 130 - 3 3 -

Italy 88 - - 5 1

Japan 133 1 3 1 -

Kazakhstan 133 - 3 3 -

Korea 163 1 5 - -

Kuwait (4 members) 2 - - - -

Kyrgystan (4 members) 17 - - - 1

Latvia 75 - 1 2 2

Lithuania 74 - 1 2 1

Luxembourg (2 members) 12 - - - 1

Macau 50 - 1 3 -

FYR Macedonia 73 - - 1 1

Malaysia 26 - - - 1

Mexico 67 - - 3 -

Mongolia 82 - - 3 -

Morocco 39 - - 1 1

Netherlands 55 - - 1 1

New Zealand 82 1 - - 4

Norway 72 1 - 1 1

Paraguay (2 members) 11 - - - 1

Peru (5 members) 59 - - 2 -

Philippines (5 members) 18 - - - 1

Poland 123 - 4 1 1

Portugal 15 - - - -

Puerto Rico 17 - - - -

Republic of Moldova 60 - - 2 -

Romania 157 2 3 1 -

Russia 204 6 - - -

Singapore 112 - 2 2 1

Slovakia 119 - 2 4 -

Slovenia 46 - - 1 1

South Africa 90 - 1 3 -

Spain 44 - - 1 1

Sri Lanka (4 members) 16 - - - 1

Sweden 60 - - 2 1

Switzerland 44 - - 1 2

Taiwan 161 1 4 1 -

64



Mathematics Competitions Vol 15 No 2 2002

Country Score Gold Silver Bronze Hon Men

Thailand 123 - 2 2 2

Trinidad and Tobago 22 - - - -

Tunisia 22 - - - 1

Turkey 135 1 1 4 -

Turkmenistan 45 - - 1 1

Ukraine 124 1 3 - -

United Kingdom 116 - 2 2 -

United States of America 171 4 1 - 1

Uruguay (1 member) 1 - - - -

Uzbekistan 60 - - - 2

Venezuela (5 members) 58 - 1 1 1

Vietnam 166 3 1 2 -

Yugoslavia 114 - 1 5 -

Total (479 contestants) 39 73 120 66

* * *
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Abilities Tested by Mathematics Olympiads

Zhu Huawei

Zhu Huawei is one of the coaches of
the Chinese National Olympiad team
and has been head coach on several
occasions. He is the editor of the
Hua Luo-gen magazine for teenage and
middle school students. He has pub-
lished many papers and monographs,
including a Course Book for the IMO,
and has translated several works and
monographs. His video series on Super
Teachers has won wide acclaim.

The International Mathematics Olympiad (IMO) is a contest of
intelligence, a major purpose of which is to discover and foster youths
with mathematical talents. Consequently, question-setting in the
IMO should put its emphasis on testing contestants’ mathematical
abilities. As Prof. Hua Luogen, a famous mathematician, pointed out,
‘Mathematics contests are different from either examinations at school
or the matriculation to colleges. Therefore, contestants are required not
only to apply formulae and theorems, but also to grasp and employ
known principles and theorems to solve practical problems, or even to
generate new methods and create new principles to solve problems.’
Then what abilities of contestants should be tested in IMO?

I. A general introduction to mathematical abilities

Mathematical abilities are defined as the steady psychological states and
features of a person while performing mathematical activities smoothly.
However, how are these abilities formed? What major components are
they made up of?
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Since the beginning of the last century, mathematicians from home and
abroad, mathematics educators and psychologists have analyzed this
question from different perspectives. No consensus has been reached
though. The major ideas are as follows:

The first idea was proposed by a Russian psychologist B A Kruteskiy,
who, after his systematic study on the qualities and structure of
mathematical abilities based on a broad range of experiments, proposed
that the components of mathematical abilities include:

1. the ability to formalize mathematical materials, to extract images
out of contents, to abstract the concrete value relations and spatial
forms, and to calculate by using forms and structures (the structure
of relations and connections);

2. the ability to summarize mathematical materials, to search for the
most important things and ignore irrelevant content, and to find
out the common features among diverse objects;

3. the ability to calculate by using numbers and other signs;

4. the ability of logical reasoning in a coherent process with proper
divisions, which is necessary in proofs, figurations and inductions;

5. the ability to shorten the reasoning process, and to think in a
shortened structure;

6. the ability to think in a reverse psychological process (to turn a
thought sequence to an inverted order);

7. flexibility of thoughts, namely, the ability to shift from one mental
stance to another, and to free one’s thoughts from the restraints
of conventions. This feature of thoughts is very important for the
creative work of a mathematician;

8. mathematical memory is a kind of memory which is fit to record
generalization, figurations and logical modes, the framework of
which can be presumed to come from the framework of science
itself;
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9. the ability to form spatial concepts, which is directly connected to
a branch of mathematics—geometry, especially solid geometry.

The second idea was put forward by the famous Russian mathematician
A H Kolmogorov who believes that mathematical abilities include the
following parts according to the characteristics of mathematics as a
discipline:

1. the ability of computational algorithms, namely, the ability to
masterly transform a complicated algebraic expression so as to
solve an equation which can not be solved in the normal way of
using a standard equation;

2. the imaginary ability and the intuition towards geometric figures;

3. mastery of logical reasoning in a consecutive process with proper
divisions.

The third idea emerged in the report Everyone Calculates made by the
Mathematical Educational Committee and the Mathematical Committee
of the US Research Association in 1989. From the direction of
educational reform in the discipline of mathematics, the report holds that
as mathematical education shifts its focus from innumerable conventional
exercises to developing mathematical abilities with a broad foundation,
students’ mathematical abilities are accordingly required to reach a level
of being capable of discerning all kinds of relations and connections,
of logical reasoning, of solving various unconventional problems by
employing a wide range of mathematical methods. Students are also
expected to have the ability of mental arithmetic as well as effective
prediction, and they need to decide when a precise solution is needed and
when to predict, and which kind of mathematical operation is the most
suitable one under particular conditions; they are capable of forming
special questions from confusing practical problems; and lastly they can
select an effective strategy to solve problems.

Based on the above three ideas and the creed of IMO, the author believes
that questions for IMO should test not only contestants’ basic abilities
but also their creative abilities.
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II. Basic abilities

Basic mathematical talents mainly include abilities in observation, as-
sociation, computation, summarizing, logical reasoning and expressiion.
These are the basis of forming the ability to analyze and solve problems,
and therefore are the basic requirements of the question.

1. The observative ability.

All man’s knowledge is gained through observations. Mathematics
needs observations, and Gauss even said that mathematics is an
observative discipline. The observative ability in mathematics is
mainly demonstrated in recognizing the ‘number’ and ‘figure’ of
things quickly, in other words, the ability to find inner connections
of a problem from its form and structure. In the IMO, this ability
is shown in the following aspects:

(a) To find out the structural features and interrelations of
mathematical relations.

(b) To recognize some special figures and relations from a
geometric figure.

Example 1.

As is shown in Figure 1, a hexagon is
divided into black and white triangles
such that any two adjacent triangles
have different colors and all the trian-
gles sharing the sides of the hexagon are
black. Prove that a decagon can not be
divided in the same way.

Figure 1
It seems that it is hard to start. But if you examine the figure
carefully, you may find out the relationship of the number of sides
of the black triangles and that of the white triangles. And this
is the key point of this problem. Presume that a decagon can
be divided in this way. Let m be the number of the sides of
the black triangles and n that of the white triangles. Then we
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can know that m − n = 10. As 3|m and 3|n, but 3 � |10, this
leads to a contradiction. So the problem is solved. The author
has even tried this problem among some Junior One students
in an IMO training class. Zhou Lu, a Junior One student from
Wuhan Foreign Language School, found the key to the problem
very quickly through observation. This shows that Junior One
students have a very keen observative ability.

2. The Associative Ability

Association is the psychological process in which someone, when
perceiving or remembering one thing, recalls some other relevant
things. Association is the bridge of transferring problems. Since
the connections between questions in IMO and basic knowledge are
complex, neither obvious nor direct, contestants are required to be
skilled in corresponding associations based on relevant knowledge
so as to find a way of solving the problem.

Here is another example, which the author set for the contestants
of the Beijing training team for the 1991 CMO.

Solve the set of equations:



y = 4x3 − 3x
z = 4y3 − 3y
x = 4z3 − 3z

If we want to solve this problem by the conventional method of
elimination, we will get into complicated calculations. However, if
we notice the regular pattern of each equation, we may associate
it with triple-angle formulas. In that case, we can find an easier
solution using substitution of variables.

3. The Computational Ability

At present, various objectives in mathematical education cover
the topic of computational ability. Take IEA, the Investigation
of International Mathematical Education, for example, whose
objectives in cognitive aspects include:

(a) Computation: the ability to directly operate with the
elements of a problem based on learnt principles, as well as
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the ability to employ particular knowledge concerning a fact
or term.

(b) Comprehension: the mastery of concepts, principles, rules and
general provisions, and the ability to convert a problem in
various ways.

(c) Application: the ability to associate relevant knowledge, to
select a proper algorithm, and to fulfil the computations; the
ability to solve a problem in conventional ways.

(d) Analysis: the ability to apply unconventional methods, to find
out their modes, and to form proofs and criticism, which is
an advanced process of thought.

The first three items of these objectives involve the testing of
computational ability. This ability is listed as a single item
respectively in the three ideas mentioned above, showing the
importance of the computational ability. The author thinks
that questions for IMO should test the accuracy, flexibility and
swiftness of contestants’ computational ability. This will mainly
be demonstrated as follows:

(a) The ability to comprehend abstract formalized notional
language.

(b) The ability to memorize the definition, formulas and the rules
of operations.

(c) The ability of transformation.

(d) The ability to simplify the operational process, namely, to
perform operations in a concise and leaping way.

(e) The ability to reverse a computational process, as well
as the ability to check it. There are many formulas in
mathematical operations which require students to apply both
a conventional order and a reverse order.

(f) The flexibility in performing operations, namely, the flexi-
bility in applying formulas, rules and concepts and also the
ability to turn to another operation as soon as one operation
ends up in a blind alley.
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The above six components are the basic elements to make up
the computational ability, and they are very important criteria to
judge a student’s computational ability. However, more advanced
requirements of IMO expect students to have the following abilities
as well:

(g) The Predictive and Estimative Ability
It is necessary to transform inequalities while predicting and
estimating, which calls for much higher abilities than trans-
forming equations. It requires not only the ability to trans-
form (like enlargement and narrowing) inequalities flexibly
and swiftly, but also a keen insight. As a result, there are
common questions that ask contestants to solve polynomials,
equations, functions, geometric problems, combinations and
problems about number theory in both domestic and over-
seas mathematical competitions in recent years, apart from
conventional problems of proving inequalities.
Take the first question in the 33rd IMO for example:
Find all possible integers a, b, c (1 < a < b < c), such that
(a − 1)(b − 1)(c − 1) is a factor of abc − 1.
To solve this problem, we must first estimate the range of

S = (abc − 1)
(a − 1)(b − 1)(c − 1)

(S ∈ N).

As we get S < 4, we then check it for S=1, 2, 3 one by one,
so as to find the key to the problem.
Here is another example, the first question in the 1992 IMO.
All the coefficients an in equation

xn + an−1x
n−1 + · · · + a1x + a0 = 0

are real numbers and

0 < a0 ≤ a1 ≤ ≤ an−1 ≤ 1.

Given that λ is the complex root of the equation, and |λ| ≥ 1,
prove that λn+1 = 1.
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This problem requires a strong ability of identical transforma-
tion on one side and an estimative method using inequalities
on the other. Statistics collected by the author show, the de-
gree of difficulty of this item is 0.248, with an average score of
5.521 points (the total score for this item is 21 points). This
indicates that our contestants’ abilities in transformation and
estimation are not well grounded enough and need further
intensive training.

(h) The ability of recurrence and induction.
This is also a kind of important computational ability often
tested in IMO in the forms of sequence of numbers and
functional equations. It is shown by statistics that this ability
is also a often tested point in the IMOs.

4. The Abstractive Summary Ability

This ability refers to the Abstract Summary of the relationship
between mathematical objects, numbers and spatial figures as well
as the computations based on these relationships. It is often tested
in the IMO in the following three directions:

(a) To form a mathematical problem from a practical problem,
that is, to extract forms and relations with mathematical
senses from the concrete materials containing numerical
relations and spatial concepts.
It is often referred to as the mathematization or formalization
of practical problems. There are a great number of
such problems in domestic and international mathematical
competitions.
For example, the fifth question in the second-round test of the
Mathematical Competition among Eight Domestic Provinces
and Municipalities in 1978 read:
There are ten people fetching water. Each of them has a
bucket. It takes the ith person (i = 1, 2, . . . , 10) Ti minutes to
fill his bucket and each Ti is different from another. Question:

i. Given only one tap, how do you arrange the order of filling
the buckets such that the total time is the shortest? How
long will the total time be? (You need to prove your
conclusion.)
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ii. What will the situation be like, given two taps? (Prove
your conclusion as well.)

This problem requires contestants to form a mathematical
model from a real problem, and then solve it by using the
rearrangement inequality.

(b) To summarize a general rule and to make a hypothesis, and
then to prove it formally. For example, here is the sixth
problem in the 18th IMO.
A sequence of numbers u0, u1, u2, . . . , un, . . . is defined as
follows:

u0 = 2, u1 =
5
2
, , un+1 = un(u2

n−1 − 2) − u1

for n = 1, 2, 3, . . . .

Prove that

[un] = 2
2n−(−1)n

3 for n = 1, 2, 3, . . .

in which [x] stands for the largest positive integer not greater
than x.
As the recurrence formula in this item is very complex, it is
hard for us to work out the general form for un. However,
we can work out u2 = 2, u3 = 8, u4 = 32 according to the
recurrence formula and the initial value of u0 and u1. From
this we can deduce that n == 2

2n−(−1)n

3 + = 2
2n−(−1)n

3 .We
then complete the proof by mathematical induction.

(c) To summarize or generalize a particular problem, generalize
an abstract conclusion through the analysis and synthesis of
a concrete problem, and finally to apply the conclusion to the
specific problem which needs solving.
For example, here is a problem from the first selection in 26th
IMO:
There are 1985 points on a circle, each of which is labelled
either plus one or minus one. Now someone starts from one
point and goes along the circle. If at each point he passes,
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the sum of all the points he has passed is positive, we call the
starting point a ‘good’ one. Prove that there is at least one
good point as long as the number of the points labelled minus
one is less than 662.
It is enough to prove that there is a good point when there
are 661 points labelled minus one. Since 1985 = 3 × 661 + 2,
we can consider proving the following general proposition: If
there are K points labelled minus one among an arbitrary
permutation of 3K + 2 points, there must exist a good point.
We can prove it by using mathematical induction and then
apply the conclusion to the original problem.

5. The Ability of Logical Reasoning

The ability of logical reasoning is the core of mathematical abilities.
It is commonly manifested as:

(a) Understanding of formal expressions, as well as mastery of the
relationship among formulas, principles, theorems and axioms
in a conceptual system.

(b) Mastery of relevant logical knowledge (such as the four forms
of propositions, sufficient condition and necessary condition,
inductive reasoning, deductive reasoning, analogical reason-
ing, transformation between equivalence and nonequivalence
of propositions), and also the ability of correct reasoning.

(c) Mastery of commonly used mathematical methods (such as
analytical method, synthetic method, reduction to absurdity,
and mathematical induction).

(d) Clear thoughts with a proper presentation. The ability to
think in a concise pattern by skipping and simplifying the rea-
soning process. According to statistics, problems on plane ge-
ometry play a very important part in the IMO, which mainly
test the ability of deductive reasoning strictly, concisely and
flexibly. In the past decades, there have been a large number
of problems on combination, graph theory, and logic. To solve
these problems, contestants do not need advanced specialized
knowledge, but a very solid background in logical reasoning.
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For example, the fifth item in the 1992 CMO reads:

In a simple graph with 8 vertices, if there is no quadrilateral,
what is the maximum number of many laterals?
This is a problem on graph theory. However, it does not
require contestants to master advanced knowledge about
graph theory, but only a strong ability of logical reasoning.

6. The ability of writing and expressing oneself.

A simplified proof for a difficult item in IMO usually needs three to
four pages to present. This demands good writing and expressing
abilities of contestants. In other words, it is quite crucial for a
contestant to express ideas explicitly, strictly and fully. As a result,
emphasising this ability should be carried out throughout the whole
process of training.

III. Creative abilities

The famous mathematician, Professor Di Longnie said, ‘The only
difference between making an important scientific discovery and solving
a good mathematical problem in IMO is that the latter will take
you five hours while the former will take you 5,000 hours.’ Thus we
can say that solving a high-level IMO item and doing mathematical
research only differ in degree and level, but they share the same quality.
From this we know that questions set for IMO ask for higher levels of
creative abilities of contestants. To be specific, mathematical creative
abilities include the ability of mathematical imagination, the ability
of mathematical intuition, the ability of mathematical conjecture, the
ability of mathematical transformation and the ability of mathematical
construction. All of these put together give the ability to solve
unconventional problems.

1. The Ability of Mathematical Imagination

Imagination is the mental process in which the human brain
processes the existing representations and then produces a new
one. It is figurative, generalized, integral, free and flexible. As
a result, it is capable of creations. Mathematical imagination,
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accordingly, is the process in which someone acquires and employs
figurative thoughts in a mathematical cognitive activity. It calls
for necessary background knowledge and the ability of figurative
thinking.

In the IMO, mathematical imagination is usually manifested in the
following aspects:

(a) Sophistication in associating mathematical problems with
geometric images (the integration of numbers and graphs).
Take the 2nd question in 1989 IberoAmericamn Mathematical
Olympiad, for example.

Let x, y, z be real numbers with 0 < x < y < z <
π

2
.

Prove that

π

2
+ 2 sinx cos y + 2 sin y cos z > sin 2x + sin 2y + sin 2z.

Analysis: To prove the original proposition, we need only
prove

π

4
+sinx cos y+sin y cos z > sin x cos x+sin y cos y+sin z cos z.

or
π

4
> sinx(cos x − cosy) + sin y(cos y − cos z) + sin z cos z.

As the right side of the last inequality contains (cosx, sinx),
(cos y, sin y) and (cos z, sin z), we can relate these to a unit
circle in a plane with orthogonal coordinates with the origin
as its center. As the figure shows, (cos x, sinx), (cos y, sin y)
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and (cos z, sin z), are three points on the circle.

Construct the vertical lines to x−axis and y−axis through
each of these points, and thus get three rectangles. In fact,
the right side of the inequality stands for the total area of
these three rectangles, which is obviously smaller than

π

4
.

The difficulty of this problem lies in the connection of an
algebraic problem and a geometrical image. However, this
connection does not come out of a void but out of the broad
background knowledge and the ability of figurative thoughts
of contestants.

(b) The ability to add auxiliary lines in geometric problems.
In both domestic and overseas mathematical Olympiads,
there have been many problems requiring geometric proof. To
prove these problems, a contestant should not only be good
at logical reasoning, but also be able to form new graphs
by adding auxiliary lines according to the given conditions.
And these construction lines as well as their relations to the
original graph are mentally visualised.
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2. The Ability of Mathematical Intuition.

Intuition is the direct comprehension and insights into the
essence of things, and mathematical intuition is the direct
comprehension and insight into the essence of mathematical
objects. The difficulties of IMO questions just lie in the insights
into mathematical essence instead of mastering more mathematical
knowledge.

In the IMO, the ability of mathematical intuition is demonstrated:

(a) To directly comprehend the essence of mathematical objects
integrally.

(b) To get a clear picture of a mathematical problem, its structure
and inner relations.

(c) To directly grasp the solution procedures and the result of a
problem.

For example, here is the first item in the second-round test for 1990
Chinese National Mathematical Competition for Senior Students.

A quadrilateral is inscribed in a circle O, with two diagonals
AC and BD intersected by P . Let O1, O2, O3, and O4 be
the circumcenters of triangles ABP , BCP , CDP and DAP
respectively. Prove that lines OP , O1O3 and O2O4 are concurrent.

Intuitive judgment: Once rectangles OO1PO3 and O2PO4O are
parallelograms, their diagonals O1O3 and OP bisect at G, O2O4

and OP bisect at G, also. As a result, OP , O1O3 and O2O4

intersect at the same point G, the middle point of OP . So we
should try to prove that rectangles OO1PO3 and O2PO4O are
parallelograms. (proof omitted)

Here we guess first, and then prove our presumption. Once
we intuitively guess that rectangles OO1PO3 and O2PO4O are
parallelograms, we find the right direction of solution. But our
guess is not purposeless. To guess precisely, we need a strong
ability of mathematical intuition.

3. The Ability of Mathematical Conjecture

Conjecture refers to the plausible reasoning of unknown things
and their laws and regularities based on some known facts and

79



Mathematics Competitions Vol 15 No 2 2002

knowledge. Mathematical conjecture is the plausible reasoning
of unknown values and their relationship according to known
mathematical conditions and theories. Therefore, it is partially
scientific with a great degree of assumption. It can be made not
only through experiments, induction, analogy and specialization,
but also by imagination, intuition, and reverse thinking. In the
IMO, the ability of mathematical conjecture is mainly shown in
the following two aspects:

(a) Guessing the approach to proofs.

(b) Guessing the conclusion of propositions, which is particularly
important in solving ‘explorative’ problems.

Take the first item in 1991 the CMO for instance.

Given a convex rectangle ABCD on a plane,

(a) if there exists a point P on the plane such that �ABP ,
�BCP , �CDP and �DAP are all of the same area, what
qualities should the rectangle ABCD have?

(b) how many points which satisfy the conditions in (a) are there
at the most on the plane? Prove your conclusion.

This is an old problem with its conclusion left out. But it surprised
the Administrative Committee of Contests that the level of scores
was so low. However, if the contestants had been supposed to
prove it with the conclusion given to them, few of them would have
made mistakes. This indicates that the contestants are not good
at solving explorative problems, and their ability in mathematical
conjecture is not solid enough. This kind of explorative problem
sets a higher requirement for contestants.

4. The Ability of Mathematical Transformation

The ability of mathematical transformation is the ability of
transformation from one kind of psychological operation to
another, which is similar to the flexibility and creativity of thoughts
in certain degrees. In the IMO, this ability is mainly demonstrated
as:
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(a) Being able to smash the bonds of usual practice and to find
new approaches and methods, if the problem cannot be solved
in conventional approaches and modes.

(b) Being able to shift from conventional thinking to reverse
thinking.

Consider this example:

Divide a convex N -sided polygon into triangles with non-
intersecting diagonals such that there are an odd number of
triangles around each vertex.

Prove that N is divisible by 3.

The conventional methods that students resort to are mathemat-
ical induction and the method of dissection. However, these are
not suitable for this problem. On the contrary, if contestants are
skillful in transformation and turn to coloring proofs, the problem
is much easier to prove.

5. The Ability of Mathematical construction

In recent years, there are more and more problems in the IMO
which call for constructive proofs. This type of problem require
the contestants to meticulously devise the mathematical objects
according to the requirements of the problems. Contestants need
to observe carefully, do well in experiments, be good at association,
imagine and guess boldly, transform flexibly and infer strictly
while solving these problems. Thus they are good tests for
contestants’ comprehensive ability and creative ability. The ability
of mathematical construction is mainly shown in the following ways
in the IMO.

(a) From the structural features of the problem, form a mathe-
matical model, such as a function, an equation, a graph, and
an algorithm, to relate the conditions to the conclusion. For
example, the 2nd item in 1989 IberoAmerican Mathemati-
cal Olympiad mentioned above can be proved concisely by
constructing a geometric graph according to the structural
features of the inequality which needs proving.

(b) Directly construct a mathematical object of the conclusion.
Take the sixth question in the 32nd IMO for example.
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Given a real number a > 1, construct a bounded infinite
sequence of numbers x0, x1, x2, . . . such that for each pair of
unequal non-negative integers i and j, |xi − xj |.|i − j|a > 1.
In this problem, contestants are supposed to directly con-
struct a sequence of numbers satisfying the given conditions.

(c) Construct a counter example satisfying the conditions so as
to negate the conclusion. For example, this is the 2nd item
in the 2nd-round test for the Chinese National Mathematical
Competition for Senior Students.
Is the proposition that a rectangle with a pair of opposite sides
of the same length must be a parallelogram, true or false?
If true, prove your conclusion. If not, construct a rectangle
which is not a parallelogram but satisfies the conditions and
then justify your method of construction.

The above 11 kinds of abilities are the main elements required of
the questions for the IMO. As they are all related, conditioned and
overlapped with each other, the requirements of question-setting in IMO
are also comprehensive rather than isolated. Usually a single question
calls for several abilities. Only for the purpose of of this discussion did
the author sort the examples into different areas with specific emphases.

Zhu Huawei

Zhuhai Superstar Experimental School

Yinwan Rd Wanzi,

Zhuhai, Guangdong, G519030

CHINA

* * *
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WFNMC International & National Awards

David Hilbert International Award

The David Hilbert International Award was established to recognise
contributions of mathematicians who have played a significant role over
a number of years in the development of mathematical challenges at the
international level which have been a stimulus for mathematical learning.

Each recipient of the award is selected by the Executive and Advisory
Committee of the World Federation of National Mathematics Competi-
tions on the recommendations of the WFNMC Awards Sub-committee.

Past recipients have been: Arthur Engel (Germany), Edward Barbeau
(Canada), Graham Pollard (Australia), Martin Gardner (USA), Murray
Klamkin (Canada), Marcin Kuczma (Poland), Maria de Losada (Colom-
bia), Peter O’Halloran (Australia) and Andy Liu (Canada).

Paul Erdös National Award

The Paul Erdös National Award was established to recognise contri-
butions of mathematicians which have played a significant role over a
number of years in the development of mathematical challenges at the
national level and which have been a stimulus for the enrichment of
mathematics learning.

Each recipient of the award is selected by the Executive and Advisory
Committee of the World Federation of National Mathematics Competi-
tions on the recommendations of the WFNMC Awards Sub-committee.

Past recipients have been: Luis Davidson (Cuba), Nikolay Konstantinov
(Russia), John Webb (South Africa), Walter Mientka (USA), Ronald
Dunkley (Canada), Peter Taylor (Australia), Sanjmyatav Urjintseren
(Mongolia), Qiu Zonghu (China), Jordan Tabov (Bulgaria), George
Berzsenyi (USA), Tony Gardiner (UK), Derek Holton (New Zealand),
Wolfgang Engel (Germany), Agnis Andžans (Latvia), Mark Saul (USA),
Francisco Bellot Rosado (Spain), János Surányi (Hungary) , Istvan
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Reiman (Hungary), Bogoljub Marinkovich (Yugoslavia), Harold Reiter
(USA) and Wen-Hsien Sun (Taiwan).

The general meeting of the WFNMC in Melbourne agreed,
from 2003, to merge the above two awards into one award titled
the Paul Erdös Award.

Requirements for Nominations for the Paul Erdös
Award

The following documents and additional information must be writtten
in English:

• A one or two page statement which includes the achievements of
the nominee and a description of the contribution by the candidate
which reflects the objectives of the WFNMC.

• Candidate’s present home and business address and telephone/telefax
number.

Nominating Authorities

The aspirant to the Awards may be proposed through the following
authorities:

• The President of the World Federation of National Mathematics
Competitions.

• Members of the World Federation of National Mathematics
Competitions Executive Committee or Regional Representatives.

The Federation encourages the submission of such nominations from
Directors or Presidents of Institutes and Organisations, from Chancellors
or Presidents of Colleges and Universities, and others.

* * *
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Dynamic Assessment Methods with Substantially
Enhanced Reliability and Efficiency

Graham Pollard & Ken Noble

Professor Graham Pollard was Pro
Vice-Chancellor, Division of Manage-
ment and Technology, University of
Canberra. He enjoys teaching probabil-
ity and statistics, and has a particular
research interest in the application of
probability and statistics to a range of
situations including quantum electron-
ics, mathematical education and scor-
ing systems in sport and assessment.

Dr Ken Noble is a Senior Analyst
for ABARE, an Australian Govern-
ment economic research agency in Can-
berra, where he designs and develops
specialised software for energy system
modelling. As a leisure time pursuit,
he enjoys devising computer programs
for solving puzzles and games.

Abstract

In a recent paper the increased reliability and efficiency of a
dynamic assessment procedure using a fixed number of ques-
tions and a 1-step dependent question-allocation procedure,
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was demonstrated. In this paper we demonstrate that a further
substantial increase in reliability and efficiency can be achieved
by modifying the earlier procedure, and using a question-allocation
process that is not a simple one-step dependent one, and by us-
ing a sequential stopping-rule in which the number of questions
is not fixed.

1. Introduction

In a recent paper the increased reliability and efficiency of a dynamic
assessment method for grading examinees into three grades (A, B and
C (fail)), was demonstrated (Pollard and Noble (2001)). By using the
proposed dynamic method, the better examinees attempted a higher
percentage of harder questions than the weaker examinees, and the
weaker examinees attempted a higher percentage of easier questions than
the better examinees.

The situation considered in the paper referred to above was one in which
an examiner was required to categorise each examinee into one of three
categories, Pass with Merit (A), Pass (B), or Fail (C) by using two
types of questions . . . easy (E) questions used primarily to discriminate
between examinees who should receive a B rather than a C, and harder
questions (H) used to discriminate between examinees who should receive
an A rather than a B. Under the proposed dynamic method, questions
were allocated in pairs to the examinees using the following one-step
dependent procedure:

1. The examination commences with a pair (H,E) of one H and one
E question for all examinees.

2. When answering an (H,E) pair of questions, the examinee who

(a) correctly answers both questions, is next given a pair of hard
questions, (H,H).

(b) incorrectly answers both questions, is next given a pair of easy
questions, (E,E).

(c) correctly answers exactly one of the questions, is next given
an (H,E) pair.
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3. When answering an (H,H) pair of questions, the examinee who

(a) correctly answers at least one of the questions, is next given
an (H,H) pair.

(b) incorrectly answers both questions, is next given an (H,E)
pair.

4. When answering an (E,E) pair of questions, the examinee who

(a) incorrectly answers at least one of the questions, is next given
an (E,E) pair.

(b) correctly answers both questions, is next given an (H,E) pair.

Examinees were given a fixed number (n) of pairs of questions, and an
examinee who obtains:

(i) greater than or equal to 50% of the hard questions correct and
greater than or equal to 50% of all questions correct, receives an
A.

(ii) less than 50% of all easy questions correct and less than 50% of all
questions correct, receives a C.

(iii) an outcome not covered by (i) or (ii) above, receives a B.

The dynamic method using the above one-step dependent procedure was
shown to be more reliable, and approximately 37% more efficient, than
the static method in which examinees are given a fixed and equal number
of H and E questions.

In this paper we use the same framework (the reader is referred to the
earlier paper for a description of this general framework) and consider
two developments or extensions of the proposed dynamic method.
Firstly, we consider a sequential method of allocating questions that
takes into account the examinee’s performance on earlier questions as
well as on the latest pair of questions. Secondly, we consider a sequential
stopping-rule in which examinees can be awarded an A, B or C grade
prior to answering all n pairs of questions, removing the need to answer

87



Mathematics Competitions Vol 15 No 2 2002

unnecessary questions. These two extensions are then combined, and
the overall effect on reliability and efficiency noted.

2. A Modified Method of Allocating Questions

We now modify the above one-step question-allocation procedure by
making use of information on the examinee’s performance on all
questions that have been attempted so far. For example, an examinee
who has ‘performed sufficiently well’ on the H questions so far, is given
another (H,H) pair even if the last (H,H) pair were both answered
incorrectly. Also, for example, following an (H,E) pair, we make use
of the performance over all questions so far, to determine whether it is
(probably) more appropriate to focus, at the next pair-allocation, on H
questions or E questions.

The modified dynamic or sequential procedure involves the allocation of
pairs of questions in the following manner:

1. The examination commences with a pair (H,E) of one H and one
E question for all examinees.

2. When answering an (H,E) pair of questions, the examinee who

(a) has correctly answered greater than or equal to 50% of all
questions attempted so far, is next given an (H,H) pair if the
H question was answered correctly, and an (H,E) pair if the
H question was incorrect.

(b) has correctly answered less than 50% of all questions
attempted so far, is next given an (E,E) pair if the E question
was incorrect, and an (H,E) pair if the E question was correct.

3. When answering an (H,H) pair of questions, the examinee who

(a) correctly answers at least one of the questions, is next given
an (H,H) pair.

(b) incorrectly answers both questions, is next given an (H,E)
pair unless the examinee has greater than or equal to 50% of
H questions correct so far, in which case the examinee is next
given an (H,H) pair.
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4. When answering an (E,E) pair of questions, the examinee who

(a) incorrectly answers at least one of the questions, is next given
an (E,E) pair.

(b) correctly answers both questions, is next given an (H,E) pair
unless the examinee has less than 50% of E questions correct
so far in which case the examinee is next given an (E,E) pair.

We now compare the previously proposed dynamic method with the
modified dynamic method described in the previous paragraph. The
number of question-pairs is fixed, as before. Using Tables 1 to 4
from the earlier paper, we can summarise the number of (relevant)
misclassifications for various values of (PH , PE), where PH is the
probability an examinee answers an H question correctly, and PE is the
probability an examinee answers an E question correctly. These are given
in Table 1, with some additional entries not previously tabled. Table 2
is the corresponding table for the modified dynamic method described
in the previous paragraph.

A comparison of Tables 1 and 2 indicates that the number of
misclassifications is less under the modified method. For example, with
35 pairs of question, the number of misclassifications is reduced by
approximately 12% from 26433 to 23176. Table 3 shows the difference
in the number of misclassifications for the two methods. It can be seen
that the modified method is superior for the smaller values of n relevant
in many practical situations.

Turning now to efficiency, we note that when n = 105 the number of
misclassifications under the modified procedure (namely 1152) is less
than the number of misclassifications under the previous proposal when
n = 115 (namely 1264). So in this case, the modified method is at least
8.7% more efficient than the unmodified method (100(1− 105

115 ) = 8.7%).
For larger values of n, the modified method is approximately 10% more
efficient than the unmodified method.

3. A Sequential Stopping-Rule Procedure with the
One-Step Dependent Allocation of Questions

It can be seen that when using a fixed number of question-pairs, an
examinee is sometimes asked questions even though the examinees
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performance on these questions will not effect, or is highly likely not
to effect, the final grade (A, B or C). The efficiency of the assessment
procedure can be enhanced by not asking such ‘unnecessary questions’.
In this way the number of question-pairs, n, becomes the maximum
number of questions given to any examinee, and the expected number of
question-pairs asked (less than n) contributes to the improved efficiency.

The stopping-rule considered was as follows. The examinees overall
performance is observed after each pair of questions is attempted 1, and
an examinee whose performance is such that:

1. the number of H questions correct minus the number of H questions
incorrect is greater than or equal to m after n − 3m, n − 3m + 1
or n − 3m + 2 questions-pair, is awarded an A, provided the
examinee has greater than or equal to 50% of all questions correct
(m=[n/3],[n/3]−1,[n/3]−2,. . . ,3,2,1 and m = 0 for the case of
exactly n question-pairs), or

2. the number of H questions incorrect minus the number of H
questions correct is greater than or equal to m. After n − 3m,
n− 3m + 1 or n− 3m + 2 question-pairs, is awarded a B, provided
the examinee has greater than or equal to 50% of all questions
correct (m=[n/3],[n/3]−1,[n/3]−2,. . . ,3,2,1), or

3. the number of E questions incorrect minus the number E questions
correct is greater than or equal to m after n − 3m, n − 3m + 1 or
n− 3m + 2 question-pairs, is awarded a C, provided the examinee
has less than 50% of all questions correct (m = [n/3],[n/3] −
1,[n/3] − 2,. . . ,3,2,1), or

4. the number of E questions correct minus the number of E questions
incorrect is greater than or equal to m after n − 3m, n − 3m + 1
or n − 3m + 2 question-pairs, is awarded a B, provided the
examinee has greater than or equal to 50% of all questions correct
(m = [n/3], [n/3] − 1, [n/3] − 2, . . . , 3, 2, 1), or

1It is noted that the pair of questions can be considered in a preferential order
with the stopping-rule applying after just one question, rather than after the pair.
This was not considered, although it is noted that such an approach would lead to a
small additional increase in efficiency.
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5. the number of E questions incorrect minus the number of E
questions correct is greater than zero after n question-pairs, is
awarded a C, provided the examinee has less than 50% of all
questions correct, or

6. it is not covered by (1) to (5) above, is awarded a B.

Table 4 shows the total number of misclassifications (similar to Tables 1
and 2) for the same (PH , PE) values as earlier. It also tables the average
number of question-pairs for various values of n, the maximum number
of question-pairs, and the mean of these averages, Av1. The average Av1
can be seen to be considerably less than n for these values of (PH , PE).
In Table 5 we repeat these average calculations for examinees on the
A/B and B/C boundaries ((PH , PE)) equals (0.5, 0.9) and (0.1, 0.5)
respectively), and note that these averages are somewhat larger than
the corresponding ones in Table 4, as expected.

In Table 6 we compare this sequential stopping-rule procedure (with the
earlier proposed 1-step dependent allocation rule) to the earlier proposal
with a fixed number of question-pairs which was described in Section 1.
The n2 in Table 6 is the largest odd value such that the total number of
misclassifications for the fixed case is greater than or equal to the total
number of misclassifications for the sequential stopping-rule case in the
same row of Table 6.

It can be seen from Table 6 that, for (PH , PE) values of (.1, .4),
(.1, .6), (.4, .9) and (.6, .9), the sequential stopping-rule procedure is
approximately 32% more efficient than the fixed number of questions
procedure when n1 = 11 (100(1−0.684)=31.6%). For values of (PH , PE)
close to (.1, .5) and (.5, .9), the sequential stopping-rule procedure is
approximately 29% more efficient when n=11 (100(1−0.713)=28.7%).
Thus, it can be seen that the increase in efficiency by using the sequential
stopping-rule, is not insubstantial. Indeed, for large values of n, the
increase in efficiency, for (PH , PE) values of such as (.1, .4), (.1, .6), (.4,
.9) and (.6, .9), is approximately 43% (100(1−0.567)=43.3%).
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4. The Modified Question-Allocation Procedure and
the Sequential Stopping-Rule Combined

The effect of combining the efficiency-enhancing methods of Sections 2
and 3 was considered, and Table 7 gives the relevant results for this
combination, for the same parameter values considered earlier.

By comparing Tables 4 and 7 it can be seen that, for all values of
n from 15 to 145, the combination of the two efficiency-enhancing
methods produces fewer misclassifications with smaller average numbers
of question-pairs, indicating improved efficiency for all these values of
n. For example, it can be seen that the number of misclassifications
in Table 7 when n = 125 (namely 802) is less than the number of
misclassifications in Table 4 when n = 135 (namely 854). By comparing
the corresponding averages, 62.85 and 70.27, it can be seen that, for large
values of n, the increase in efficiency by adding the modified question-
allocation procedure to the sequential stopping-rule method is of the
order of 10%(100(1 − 62.85

70.27 ) = 10.6%).

5. A Comparison with the Static Assessment Method

We now compare the method of Section 4 with the static case considered
in the paper referred to earlier. Table 8 gives the total number of
misclassifications for the static case, and can be derived from Tables
1 to 4 in the earlier paper. The case when n = 15 in Table 7 has fewer
misclassifications (namely 83240) than the case when n = 15 in Table
8 (namely 84891). Thus, when n = 15, the increase in efficiency by
using the method of Section 4 is at least 53% (100(1 − 7.03

15 ) = 53.1%).
Also, comparing the case when n = 35 in Table 7 with the case
when n = 45 in Table 8, the increase in efficiency is at least 61%
(100(1 − 17.50

45 ) = 61.1%). And comparing the case when n = 95 in
Table 7 with the case when n = 135 in Table 8, the increase in efficiency
is at least 64% (100(1 − 48.05

135 ) = 64.4%). For even larger values of n,
increases in efficiency of about 67% are achievable.

6. Conclusions

The efficiency of assessment procedures can be very substantially
increased by using dynamic methods. A particular question-allocation
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rule and a sequential stopping-rule have each been shown to contribute
very substantially to the improved efficiency.

Table 1

The Number of Misclassifications in the Unmodified (1-step dependent)
Method

(PH , PE) (1, 4) (1, 6) (4, 9) (6, 9) Total
Misclassified as B C A B
n = 5 37112 20580 32318 26277 116287
n = 15 20220 12811 17876 15193 66100
n = 25 12275 8080 11064 9528 40947
n = 35 7979 5292 7085 6077 26433
n = 45 5211 3595 4694 4127 17627
n = 105 518 364 466 428 1776
n = 115 378 262 328 296 1264
n = 135 161 115 149 129 554
n = 145 118 90 120 104 432

Table 2

The Number of Misclassifications with the Modified Method of
Allocating Questions

(PH,PE) (1, 4) (1, 6) (4, 9) (6, 9) Total
Misclassified as B C A B
n = 5 37196 21260 31273 26186 115915
n = 15 19917 12055 16376 14604 62952
n = 25 11877 7212 9476 8900 37465
n = 35 7372 4477 5783 5544 23176
n = 45 4764 2908 3668 3631 14971
n = 105 374 210 258 310 1152
n = 115 266 156 185 213 820
n = 135 106 59 68 90 323
n = 145 81 49 55 68 253
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Table 3

The Difference in the Number of Misclassifications : Unmodified Minus
Modified Method of Allocating Questions

Difference
(same parameters)

n = 5 372
n = 7 1080
n = 9 1926
n = 11 2527
n = 13 2755
n = 15 3148
n = 17 3256
n = 19 3301
n = 21 3295
n = 23 3526
n = 25 3482
n = 35 3257
n = 45 2656
n = 105 624
n = 115 444
n = 135 231
n = 145 179
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Table 4

The Total Number of Misclassifications and the Average Number of
Question-Pairs Attempted for the Sequential Stopping-Rule Procedure

with the One-step Dependent Allocation of Questions

n Total Average Number of Question-Pairs Average
Misclassifications (1, 4) (1, 6) (4, 9) (6, 9) Av1

5 134061 2.41 2.42 2.42 2.40 2.41
9 111649 3.84 4.04 4.03 3.84 3.94
11 102001 4.62 4.96 4.95 4.62 4.79
15 83922 6.89 7.23 7.22 6.89 7.06
25 54415 11.92 12.72 12.72 11.92 12.32
35 35760 17.26 18.42 18.44 17.23 17.84
45 23709 22.51 24.10 24.09 22.48 23.30
55 16126 27.63 29.69 29.68 27.63 28.66
65 10878 32.72 35.24 35.20 32.73 33.97
75 7481 37.76 40.72 40.70 37.79 39.24
85 5164 42.77 46.16 46.17 42.75 44.46
95 3701 47.73 51.60 51.58 47.72 49.66
105 2504 52.66 57.02 56.97 52.69 54.84
115 1716 57.56 62.40 62.36 57.63 59.99
125 1196 62.50 67.78 67.76 62.52 65.14
135 854 67.41 73.16 73.12 67.39 70.27
145 607 72.29 78.51 78.50 72.30 75.40
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Table 5

The Average Number of Question-Pairs Attempted for Examinees on
the B/C and A/B Boundaries

Average Number of Average
n Question-Pairs Av2

(1, 5) (5, 9)
5 2.44 2.44 2.44
9 4.06 4.06 4.06
11 4.99 4.99 4.99
15 7.50 7.50 7.50
25 13.80 13.79 13.79
35 20.88 20.90 20.89
45 28.40 28.38 28.39
55 36.12 36.13 36.12
65 44.05 44.08 44.06
75 52.20 52.20 52.20
85 60.33 60.39 60.36
95 68.74 68.75 68.74
105 77.17 77.14 77.15
115 85.70 85.60 85.65
125 94.21 94.23 94.22
135 102.85 102.87 102.86
145 111.58 111.59 111.58
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Table 6

A Comparison of the Sequential Stopping Procedure with the Fixed
Number of Question-Pairs Procedure

Sequential Stopping Relevant Fixed
-Rule Case Case Comparison

n1 Total Av1 Av2 n2 Total Av1/n2 Av2/n2

misclassification misclassifications

5 134061 2.41 2.44 3 134482 0.803 0.813
9 111649 3.94 4.06 5 116287 0.788 0.812
11 102001 4.79 4.99 7 102374 0.684 0.713
15 83922 7.06 7.50 9 91179 0.784 0.833
25 54415 12.32 13.79 17 59624 0.725 0.811
35 35760 17.84 20.89 27 37635 0.661 0.774
45 23709 23.30 28.39 37 24430 0.630 0.767
55 16126 28.66 36.12 47 16243 0.610 0.769
65 10878 33.97 44.06 57 11006 0.596 0.773
75 7481 39.24 52.20 65 8139 0.604 0.803
85 5164 44.46 60.36 77 5201 0.577 0.784
95 3701 49.66 68.74 83 4002 0.598 0.828
105 2504 54.84 77.15 95 2600 0.577 0.812
115 1716 59.99 85.65 107 1722 0.561 0.800
125 1196 65.14 94.22 115 1264 0.566 0.819
135 854 70.27 102.86 125 854 0.562 0.823
145 607 75.40 111.58 133 616 0.567 0.839
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Table 7

The Results for the Modified Question-Allocation Procedure Combined
with the Sequential Stopping-Rule

n Total Average
Misclassifications Av1

5 132648 2.46
15 83240 7.03
25 52775 12.17
35 33688 17.50
45 21781 22.76
55 14258 27.93
65 9368 33.03
75 6171 38.08
85 4210 43.07
95 2838 48.05
105 1904 52.99
115 1287 57.92
125 802 62.85
135 571 67.75
145 400 72.65

Table 8

The Total Number of Misclassifications for the Static Case

Total
n Misclassifications
5 126362
15 84891
25 61443
35 45630
45 34592
85 12399
135 3778
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